Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894811

RESUMEN

In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción AP-1 , Humanos , Proteína Tirosina Quinasa CSK/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Inflamación/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Resveratrol/metabolismo , Familia-src Quinasas/metabolismo , Trombina/metabolismo , Factor de Transcripción AP-1/metabolismo
2.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012347

RESUMEN

Tumor necrosis factor (TNF)-α is involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. It is a crucial pro-inflammatory cytokine in many heart disorders, including chronic heart failure and ischemic heart disease, contributing to cardiac remodeling and dysfunction. The implication of TNF-α in inflammatory responses in the heart has been indicated to be mediated through the induction of C-C Motif Chemokine Ligand 20 (CCL20). However, the detailed mechanisms of TNF-α-induced CCL20 upregulation in human cardiac fibroblasts (HCFs) are not completely defined. We demonstrated that in HCFs, TNF-α induced CCL20 mRNA expression and promoter activity leading to an increase in the secretion of CCL20. TNF-α-mediated responses were attenuated by pretreatment with TNFR1 antibody, the inhibitor of epidermal growth factor receptor (EGFR) (AG1478), p38 mitogen-activated protein kinase (MAPK) (p38 inhibitor VIII, p38i VIII), c-Jun amino N-terminal kinase (JNK)1/2 (SP600125), nuclear factor kappaB (NF-κB) (helenalin), or forkhead box O (FoxO)1 (AS1841856) and transfection with siRNA of TNFR1, EGFR, p38α, JNK2, p65, or FoxO1. Moreover, TNF-α markedly induced EGFR, p38 MAPK, JNK1/2, FoxO1, and NF-κB p65 phosphorylation which was inhibited by their respective inhibitors in these cells. In addition, TNF-α-enhanced binding of FoxO1 or p65 to the CCL20 promoter was inhibited by p38i VIII, SP600125, and AS1841856, or helenalin, respectively. Accordingly, in HCFs, our findings are the first to clarify that TNF-α-induced CCL20 secretion is mediated through a TNFR1-dependent EGFR/p38 MAPK and JNK1/2/FoxO1 or NF-κB cascade. We demonstrated that TNFR1-derived EGFR transactivation is involved in the TNF-α-induced responses in these cells. Understanding the regulation of CCL20 expression by TNF-α on HCFs may provide a potential therapeutic strategy in cardiac inflammatory disorders.


Asunto(s)
Quimiocina CCL20 , FN-kappa B , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Células Cultivadas , Quimiocina CCL20/genética , Receptores ErbB/genética , Fibroblastos/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Antioxidants (Basel) ; 11(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35453467

RESUMEN

Lung inflammation is a pivotal event in the pathogenesis of acute lung injury. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme that could be induced by kaempferol (KPR) and exerts anti-inflammatory effects. However, the molecular mechanisms of KPR-mediated HO-1 expression and its effects on inflammatory responses remain unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). This study aimed to verify the relationship between HO-1 expression and KPR treatment in both in vitro and in vivo models. HO-1 expression was determined by real time-PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated by using pharmacological inhibitors or specific siRNAs. Chromatin immunoprecipitation (ChIP) assay was performed to investigate the interaction between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of HO-1 promoter. The effect of KPR on monocytes (THP-1) binding to HPAEpiCs challenged with lipopolysaccharides (LPS) was determined by adhesion assay. We found that KPR-induced HO-1 level attenuated the LPS-induced intercellular cell adhesion protein 1 (ICAM-1) expression in HPAEpiCs. KPR-induced HO-1 mRNA and protein expression also attenuated ICAM-1 expression in mice. Tin protoporphyrin (SnPP)IX reversed the inhibitory effects of KPR in HPAEpiCs. In addition, in HPAEpiCs, KPR-induced HO-1 expression was abolished by both pretreating with the inhibitor of NADPH oxidase (NOX, apocynin (APO)), reactive oxygen species (ROS) (N-acetyl-L-cysteine (NAC)), Src (Src kinase inhibitor II (Srci II)), Pyk2 (PF431396), protein kinase C (PKC)α (Gö6976), p38 mitogen-activated protein kinase (MAPK) inhibitor (p38i) VIII, or c-Jun N-terminal kinases (JNK)1/2 (SP600125) and transfection with their respective siRNAs. The transcription of the homx1 gene was enhanced by Nrf2 activated by JNK1/2 and p38α MAPK. The binding activity between Nrf2 and HO-1 promoter was attenuated by APO, NAC, Srci II, PF431396, or Gö6983. KPR-mediated NOX/ROS/c-Src/Pyk2/PKCα/p38α MAPK and JNK1/2 activate Nrf2 to bind with ARE on the HO-1 promoter and induce HO-1 expression, which further suppresses the LPS-mediated inflammation in HPAEpiCs. Thus, KPR exerts a potential strategy to protect against pulmonary inflammation via upregulation of the HO-1.

4.
Oxid Med Cell Longev ; 2022: 7664290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242277

RESUMEN

Human cardiac fibroblasts (HCFs) play key roles in normal physiological functions and pathological processes in the heart. Our recent study has found that, in HCFs, sphingosine 1-phosphate (S1P) can upregulate the expression of cyclooxygenase-2 (COX-2) leading to prostaglandin E2 (PGE2) generation mediated by S1P receptors/PKCα/MAPKs cascade-dependent activation of NF-κB. Alternatively, G protein-coupled receptor- (GPCR-) mediated transactivation of receptor tyrosine kinases (RTKs) has been proved to induce inflammatory responses. However, whether GPCR-mediated transactivation of RTKs participated in the COX-2/PGE2 system induced by S1P is still unclear in HCFs. We hypothesize that GPCR-mediated transactivation of RTKs-dependent signaling cascade is involved in S1P-induced responses. This study is aimed at exploring the comprehensive mechanisms of S1P-promoted COX-2/PGE2 expression and apoptotic effects on HCFs. Here, we used pharmacological inhibitors and transfection with siRNA to evaluate whether matrix metalloprotease (MMP)2/9, heparin-binding- (HB-) epidermal growth factor (EGF), EGF receptor (EGFR), PI3K/Akt, MAPKs, and transcription factor AP-1 participated in the S1P-induced COX-2/PGE2 system determined by Western blotting, real-time polymerase chain reaction (RT-PCR), chromatin immunoprecipitation (ChIP), and promoter-reporter assays in HCFs. Our results showed that S1PR1/3 activated by S1P coupled to Gq- and Gi-mediated MMP9 activity to stimulate EGFR/PI3K/Akt/MAPKs/AP-1-dependent activity of transcription to upregulate COX-2 accompanied with PGE2 production, leading to stimulation of caspase-3 activity and apoptosis. Moreover, S1P-enhanced c-Jun bound to COX-2 promoters on its corresponding binding sites, which was attenuated by these inhibitors of protein kinases, determined by a ChIP assay. These results concluded that transactivation of MMP9/EGFR-mediated PI3K/Akt/MAPKs-dependent AP-1 activity was involved in the upregulation of the COX-2/PGE2 system induced by S1P, in turn leading to apoptosis in HCFs.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Lisofosfolípidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Miocardio/citología , Esfingosina/análogos & derivados , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Ciclooxigenasa 2/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/genética , Metaloproteinasa 9 de la Matriz/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esfingosina/farmacología , Factor de Transcripción AP-1/metabolismo , Transfección
5.
Oxid Med Cell Longev ; 2022: 1372958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281466

RESUMEN

Recently, we found that 5,8-dihydroxy-4',7-dimethoxyflavone (DDF) upregulated the expression of heme oxygenase (HO)-1 via p38 mitogen-activated protein kinase/nuclear factor-erythroid factor 2-related factor 2 (MAPK/Nrf2) pathway in human cardiac fibroblasts (HCFs). However, the alternative processes by which DDF induces the upregulation of HO-1 expression are unknown. Activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and protein kinase C (PKC)α may initiate specificity protein (Sp)1 activity, which has been reported to induce expression of antioxidant molecules. Thus, we explored whether these components are engaged in DDF-induced HO-1 upregulation in HCFs. Western blotting, promoter-reporter analyses, and real-time polymerase chain reactions were adopted to measure HO-1 and vascular cell adhesion molecule (VCAM)-1 expressions in HCFs. Respective small interfering (si)RNAs and pharmacological inhibitors were employed to investigate the signaling components engaged in DDF-induced HO-1 upregulation. The chromatin immunoprecipitation assay was conducted to detect the binding interaction of Sp1 and antioxidant response elements (ARE) on the promoter of HO-1. An adhesion assay of THP-1 monocyte was undertaken to examine the functional effect of HO-1 on tumor necrosis factor (TNF)-α-induced VCAM-1 expression. DDF stimulated the EGFR/PKCα/PI3K/Akt pathway leading to activation of Sp1 in HCFs. The roles of these protein kinases in HO-1 induction were ensured by transfection with their respective siRNAs. Chromatin immunoprecipitation assays revealed the interaction between Sp1 and the binding site of proximal ARE on the HO-1 promoter, which was abolished by glutathione, AG1478, Gö6976, LY294002, or mithramycin A. HO-1 expression enhanced by DDF abolished the monocyte adherence to HCFs and VCAM-1 expression induced by TNF-α. Pretreatment with an inhibitor of HO-1: zinc protoporphyrin IX reversed these inhibitory effects of HO-1. We concluded that DDF-induced HO-1 expression was mediated via an EGFR/PKCα/PI3K/Akt-dependent Sp1 pathway and attenuated the responses of inflammation in HCFs.


Asunto(s)
Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Hemo-Oxigenasa 1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Humanos , Transfección
6.
Neurotox Res ; 40(1): 154-172, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34997457

RESUMEN

Excessive production of reactive oxygen species (ROS) by NADPH oxidase (Nox) resulted in inflammation. The negative regulator of ROS (NRROS) dampens ROS generation during inflammatory responses. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) exhibits neuroprotective effects on central nervous system (CNS). However, whether 15d-PGJ2-induced NRROS expression was unknown in rat brain astrocytes (RBA-1). NRROS expression was determined by Western blot, RT/real-time PCR, and promoter activity assays. The signaling components were investigated using pharmacological inhibitors or specific siRNAs. The interaction between transcription factors and the NRROS promoter was investigated by chromatin immunoprecipitation assay. Upregulation of NRROS on the hydrogen peroxide (H2O2)-mediated ROS generation and interleukin 6 (IL-6) secretion was measured. 15d-PGJ2-induced NRROS expression was mediated through PI3K/Akt-dependent activation of Sp1 and FoxO1 and established the essential promoter regions. We demonstrated that 15d-PGJ2 activated PI3K/Akt and following by cooperation between phosphorylated nuclear FoxO1 and Sp1 to initiate the NRROS transcription. In addition, Nrf2 played a key role in NRROS expression induced by 15d-PGJ2 which was mediated through its phosphorylation. Finally, the NRROS stable clones attenuated the H2O2-induced ROS generation and expression of IL-6 through suppressing the Nox-2 activity. These results suggested that 15d-PGJ2-induced NRROS expression is mediated through a PI3K/Akt-dependent FoxO1 and Sp1 phosphorylation, and Nrf2 cascade, which suppresses ROS generation through attenuating the p47phox phosphorylation and gp91phox formation and IL-6 expression in RBA-1 cells. These results confirmed the mechanisms underlying 15d-PGJ2-induced NRROS expression which might be a potential strategy for prevention and management of brain inflammatory and neurodegenerative diseases.


Asunto(s)
Astrocitos , Factor 2 Relacionado con NF-E2 , Animales , Encéfalo/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
7.
J Inflamm Res ; 14: 2807-2824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234507

RESUMEN

PURPOSE: Tumor necrosis factor-α (TNF-α) has been shown to exert as a pathogenic factor in cardiac fibrosis and heart failure which were associated with the up-regulation of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) axis. However, whether TNF-α-induced COX-2/PGE2 upregulation mediated through ROS-dependent cascade remains elusive in human cardiac fibroblasts (HCFs). This study aims to address the underlying mechanisms of TNF-α-induced COX-2/PGE2 expression. METHODS: Here, we used TNF receptor neutralizing antibody (TNFR nAb), pharmacologic inhibitors, and siRNAs to dissect the involvement of signaling components examined by Western blot and ELISA in TNF-α-mediated responses in HCFs. MitoSOX Red was used to measure mitoROS generation. Isolation of subcellular fractions was performed to determine membrane translocation of PKCα. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to determine the role of transcription factor. RESULTS: We found that TNF-α time- and concentration-dependently upregulated COX-2 protein and mRNA expression as well as PGE2 synthesis which was attenuated by TNFR1 nAb, the inhibitor of mitochondrial ROS scavenger (MitoTEMPO), protein kinase C [(PKC)α, Gö6976], p38 MAPK [p38 inhibitor VIII, (p38i VIII)], JNK1/2 (SP600125), or forkhead box protein O1 [(FoxO1), AS1842856], and transfection with their respective siRNAs in HCFs. TNF-α-stimulated PKCα phosphorylation was inhibited by TNFR1 nAb, MitoTEMPO, or Gö6976. TNF-α stimulated phosphorylation of p38 MAPK and JNK1/2 was attenuated by TNFR1 nAb, MitoTEMPO, Gö6976, and their inhibitors p38i VIII and SP600125. Moreover, TNF-α-triggered FoxO1 phosphorylation was abolished by AS1842856, TNFR1 nAb, and its upstream inhibitors MitoTEMPO, Gö6976, p38i VIII, and SP600125. Phosphorylation of FoxO1 could enhance its interaction with the COX-2 promoter element revealed by ChIP assay, which was attenuated by AS1842856. CONCLUSION: Our results suggested that TNF-α-induced COX-2/PGE2 upregulation is mediated through TNFR1-dependent MitoROS/PKCα/p38 MAPK and JNK1/2 cascade to activate FoxO1 binding with the COX-2 promoter in HCFs.

8.
Oxid Med Cell Longev ; 2021: 5521196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194603

RESUMEN

Carbon monoxide releasing molecule-3 (CORM-3) has been shown to protect inflammatory diseases via the upregulation of heme oxygenases-1 (HO-1). However, in rat brain astrocytes (RBA-1), the mechanisms underlying CORM-3-induced HO-1 remain poorly defined. This study used western blot, real-time PCR, and promoter activity assays to determine the levels of HO-1 expression and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE) to measure reactive oxygen species (ROS). We found that CORM-3-induced HO-1 expression was mediated through ROS generation by Nox or mitochondria. The signaling components were differentiated by pharmacological inhibitors and small interfering RNA (siRNA). Subcellular fractions, immunofluorescent staining, and chromatin immunoprecipitation assay were used to evaluate the nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The roles of mTOR and FoxO1 in CORM-3-stimulated responses are still unknown in RBA-1 cells. Our results demonstrated that transfection with siRNAs or pretreatment with pharmacological inhibitors attenuated the levels of HO-1 and phosphorylation of signaling components including Akt, mTOR, FoxO1, and Nrf2 stimulated by CORM-3. Moreover, pretreatment with N-acetyl-L-cysteine, diphenyleneiodonium chloride, apocynin, or rotenone blocked nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The present study concluded that in RBA-1 cells, CORM-3-induced HO-1 expression is, at least partially, mediated through Nox and mitochondria/ROS-dependent PI3K/Akt/mTOR cascade to activate FoxO1 or ROS leading to activation of Nrf2 activity.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Compuestos Organometálicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Inducción Enzimática/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/biosíntesis , Humanos , Ratas , Transfección
9.
J Inflamm Res ; 14: 657-687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707963

RESUMEN

Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.

10.
Oxid Med Cell Longev ; 2020: 1080168, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343802

RESUMEN

Heme oxygenase-1 (HO-1) has been shown to exert as an antioxidant and anti-inflammatory enzyme in cardiovascular inflammatory diseases. Flavonoids have been demonstrated to display anti-inflammatory and antioxidant effects through the induction of HO-1. 5,8-Dihydroxy-4',7-dimethoxyflavone (DDF), one of the flavonoid compounds, is isolated from Reevesia formosana. Whether DDF induced HO-1 expression on human cardiac fibroblasts (HCFs) remained unknown. Here, we found that DDF time- and concentration-dependently induced HO-1 protein and mRNA expression, which was attenuated by pretreatment with reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC) in HCFs. DDF-enhanced ROS generation was attenuated by NAC, but not by either diphenyleneiodonium chloride (DPI, Nox inhibitor) or MitoTempol (mitochondrial ROS scavenger). Interestingly, pretreatment with glutathione (GSH) inhibited DDF-induced HO-1 expression. The ratio of GSH/GSSG was time-dependently decreased in DDF-treated HCFs. DDF-induced HO-1 expression was attenuated by an inhibitor of p38 MAPK (p38i VIII) or siRNA, but not by MEK1/2 (PD98059) or JNK1/2 (SP600125). DDF-stimulated p38 MAPK phosphorylation was inhibited by GSH or p38i VIII. Moreover, DDF-induced HO-1 expression was mediated through Nrf2 phosphorylation and translocation into the nucleus which was attenuated by NAC or p38 siRNA. DDF also stimulated antioxidant response element (ARE) promoter activity which was inhibited by NAC, GSH, or p38i VIII. Interaction between Nrf2 and the ARE-binding sites on the HO-1 promoter was revealed by chromatin immunoprecipitation assay, which was attenuated by NAC, GSH, or p38i VIII. We further evaluated the functional effect of HO-1 expression on the thrombin-induced fibrotic responses. Our result indicated that the induction of HO-1 by DDF can attenuate the thrombin-induced connective tissue growth factor expression. These results suggested that DDF-induced HO-1 expression is, at least, mediated through the activation of the ROS-dependent p38 MAPK/Nrf2 signaling pathway in HCFs. Thus, the upregulation of HO-1 by DDF could be a candidate for the treatment of heart fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/biosíntesis , Fibroblastos/metabolismo , Flavonas/farmacología , Hemo-Oxigenasa 1/biosíntesis , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trombina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Inducción Enzimática/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Humanos , Factor 2 Relacionado con NF-E2/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
11.
Biomolecules ; 10(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121588

RESUMEN

Mevastatin (MVS) has been previously shown to induce heme oxygenase (HO)-1 expression through Nox/ROS-dependent PDGFRα/PI3K/Akt/Nrf2/ARE axis in human pulmonary alveolar epithelial cells (HPAEpiCs). However, alternative signaling pathways might involve in MVS-induced HO-1 expression. We found that tumor necrosis factor α (TNFα) induced vascular cell adhesion protein 1 (VCAM-1) expression and NF-κB p65 phosphorylation which were attenuated by pretreatment with MVS via up-regulation of HO-1, determined by Western blot and real-time qPCR. TNFα-induced VCAM-1 expression was attenuated by an NF-κB inhibitor, Bay117082. The inhibitory effects of MVS were reversed by tin protoporphyrin (SnPP)IX (an inhibitor of HO-1 activity). In addition, pretreatment with the inhibitor of pan-Protein kinase C (PKC) (GF109203X), PKCα (Gö6983), Pyk2 (PF431396), p38α MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA), and transfection with their respective siRNAs abolished MVS-induced HO-1 expression in HPAEpiCs. c-Jun (one of AP-1 subunits) was activated by PKCα, Pyk2, p38α MAPK, and JNK1/2, which turned on the transcription of the homx1 gene. The interaction between c-Jun and HO-1 promoter was confirmed by a chromatin immunoprecipitation (ChIP) assay, which was attenuated by these pharmacological inhibitors. These results suggested that MVS induces AP-1/HO-1 expression via PKCα/Pyk2/p38α MAPK- or JNK1/2-dependent c-Jun activation, which further binds with AP-1-binding site on HO-1 promoter and suppresses the TNFα-mediated inflammatory responses in HPAEpiCs. Thus, upregulation of the AP-1/HO-1 system by MVS exerts a potentially therapeutic strategy to protect against pulmonary inflammation.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/biosíntesis , Lovastatina/análogos & derivados , Monocitos/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Adhesión Celular/efectos de los fármacos , Línea Celular , Humanos , Lovastatina/farmacología
12.
J Clin Med ; 9(1)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952230

RESUMEN

BACKGROUND: Mevastatin (MVS), a 3-hydroxy-3-methylglutaryl coenzyme, a reductase (HMG-CoA) inhibitor, has anti-inflammatory effects potentially via up-regulation of heme oxygenase-1 (HO-1). However, the mechanisms underlying MVS-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). METHODS: HO-1 and intercellular adhesion molecule (ICAM)-1 expression were determined using real-time PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated using pharmacological inhibitors or specific small interfering RNA (siRNA)s. Interaction between Nrf2 and the antioxidant response element (ARE) binding site for the HO-1 promoter was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS: Upregulation of HO-1 by MVS attenuated the tumor necrosis factor (TNF)-α-stimulated ICAM-1 expression associated with THP-1 adhesion to HPAEpiCs. These inhibitory effects of HO-1 were reversed by tin protoporphyrin (SnPP)IX or by transfection with HO-1 siRNA. MVS-induced HO-1 expression was mediated via NADPH oxidase (Nox)-derived reactive oxygen species (ROS) generation. Activation of Nox2/ROS further stimulated the phosphorylation of p47phox, proto-oncogene tyrosine-protein kinase (c-Src), platelet-derived growth factor receptor (PDFGR)α, protein kinase B (Akt), and Nrf2, which were inhibited by siRNAs. Pretreatment with pharmacological inhibitors, including diphenyleneiodonium (DPI), apocynin (APO), N-acetyl-L-cysteine (NAC), PP1, AG1296, or LY294002, reduced the MVS-activated Nrf2 nuclear-translocation binding to the ARE on the HO-1 promoter. CONCLUSIONS: MVS-induced HO-1 is, at least in part, mediated through a p47phox/Nox2/ROS-dependent activation of c-Src/PDGFRα/PI3K/Akt-regulated Nrf2/ARE axis and suppresses the TNF-α-mediated inflammatory responses in HPAEpiCs.

13.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905967

RESUMEN

Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Movimiento Celular/fisiología , Lipopolisacáridos/efectos adversos , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Quinasa 2 de Adhesión Focal , Genes src , Humanos , MAP Quinasa Quinasa 4/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Transcripción AP-1/metabolismo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562971

RESUMEN

Galangin, a member of the flavonol compounds of the flavonoids, could exert anti-inflammatory effects in various cell types. It has been used for the treatment of arthritis, airway inflammation, stroke, and cognitive impairment. Thrombin, one of the regulators of matrix metalloproteinase (MMPs), has been known as a vital factor of physiological and pathological processes, including cell migration, the blood⁻brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. MMP-9 especially may contribute to neurodegenerative diseases. However, the effect of galangin in combating thrombin-induced MMP-9 expression is not well understood in neurons. Therefore, we attempted to explore the molecular mechanisms by which galangin inhibited MMP-9 expression and cell migration induced by thrombin in SK-N-SH cells (a human neuroblastoma cell line). Gelatin zymography, western blot, real-time PCR, and cell migration assay were used to elucidate the inhibitory effects of galangin on the thrmbin-mediated responses. The results showed that galangin markedly attenuated the thrombin-stimulated phosphorylation of proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), protein kinase C (PKC)α/ß/δ, protein kinase B (Akt), mammalian target of rapamycin (mTOR), p42/p44 mitogen-activated protein kinase (MAPK), Jun amino-terminal kinases (JNK)1/2, p38 MAPK, forkhead box protein O1 (FoxO1), p65, and c-Jun and suppressed MMP-9 expression and cell migration in SK-N-SH cells. Our results concluded that galangin blocked the thrombin-induced MMP-9 expression in SK-N-SH cells via inhibiting c-Src, Pyk2, PKCα/ßII/δ, Akt, mTOR, p42/p44 MAPK, JNK1/2, p38 MAPK, FoxO1, c-Jun, and p65 phosphorylation and ultimately attenuated cell migration. Therefore, galangin may be a potential candidate for the management of brain inflammatory diseases.


Asunto(s)
Flavonoides/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/biosíntesis , Proteínas Quinasas/metabolismo , Trombina/farmacología , Factor de Transcripción ReIA/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/genética , Metaloproteinasa 9 de la Matriz/genética , Proteínas Quinasas/genética , Proto-Oncogenes Mas , Factor de Transcripción ReIA/genética
15.
Int J Mol Sci ; 19(10)2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30301269

RESUMEN

Staphylococcus aureus (S. aureus) is a very common Gram-positive bacterium. It is widely distributed in air, soil, and water. S. aureus often causes septicemia and pneumonia in patients. In addition, it is considered to play a key role in mediating cell adhesion molecules upregulation. Resveratrol is a natural antioxidant with diverse biological effects, including the modulation of immune function, anti-inflammation, and cancer chemoprevention. In this study, we proved that S. aureus-upregulated vascular cell adhesion molecule-1 (VCAM-1) expression in human lung epithelial cells (HPAEpiCs) was inhibited by resveratrol. We also observed that resveratrol downregulated S. aureus-enhanced leukocyte count in bronchoalveolar lavage (BAL) fluid in mice. In HPAEpiCs, S. aureus stimulated c-Src, PDGFR, p38 MAPK, or JNK1/2 phosphorylation, which was inhibited by resveratrol. S. aureus induced the adhesion of THP-1 cells (a human monocytic cell line) to HPAEpiCs, which was also reduced by resveratrol. Finally, we found that S. aureus induced c-Src/PDGFR/p38 MAPK and JNK1/2-dependent c-Jun and ATF2 activation and in vivo binding of c-Jun and ATF2 to the VCAM-1 promoter, which were inhibited by resveratrol. Thus, resveratrol functions as a suppressor of S. aureus-induced inflammatory signaling, not only by inhibiting VCAM-1 expression but also by diminishing c-Src, PDGFR, JNK1/2, p38 MAPK, and AP-1 activation in HPAEpiCs.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Adhesión Celular , Monocitos/efectos de los fármacos , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Resveratrol/farmacología , Infecciones Estafilocócicas/metabolismo , Factor de Transcripción Activador 2/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos ICR , Monocitos/fisiología , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción AP-1/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Cell Mol Life Sci ; 75(24): 4599-4617, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229288

RESUMEN

Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.


Asunto(s)
Ciclooxigenasa 2/inmunología , Fibroblastos/inmunología , Interleucina-6/inmunología , Lisofosfatidilcolinas/inmunología , Miocardio/inmunología , Regulación hacia Arriba , Animales , Línea Celular , Ciclooxigenasa 2/genética , Humanos , Interleucina-6/genética , Masculino , Ratones Endogámicos ICR , Miocardio/citología , NADPH Oxidasas/inmunología , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/inmunología
17.
Br J Pharmacol ; 175(20): 3928-3946, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30088830

RESUMEN

BACKGROUND AND PURPOSE: Haem oxygenase-1 (HO-1) is induced by thiazolidinediones including rosiglitazone and exerts anti-inflammatory effects in various models. However, the molecular mechanisms underlying rosiglitazone-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). EXPERIMENTAL APPROACH: HO-1 expression was determined by real time-PCR, Western blotting and promoter reporter analyses. Signalling pathways were investigated using pharmacological inhibitors or specific siRNAs. Interactions between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of the HO-1 promoter were investigated with chromatin immunoprecipitation assays. KEY RESULTS: Up-regulation of HO-1 in HPAEpiCs or in mice by rosiglitazone blunted ICAM-1 expression and monocyte adhesion to HPAEpiCs challenged with LPS. Rosiglitazone-induced HO-1 expression was significantly attenuated by NADPH oxidase (NOX) inhibitors (apocynin and diphenyleneiodonium) or ROS scavenger (N-acetyl cysteine). The involvement of NOX activity and ROS generation in rosiglitazone-induced HO-1 expression was confirmed by transfection with p47phox or NOX2 siRNA. Moreover, pretreatment with the inhibitors of c-Src (c-Srci II), proline-rich tyrosine kinase 2 (Pyk2) (PF431396), Akt (Akti VIII) or PPARγ (GW9662) and transfection with siRNA of c-Src, Pyk2, Akt or PPARγ abolished the rosiglitazone-induced HO-1 expression in HPAEpiCs. Subsequently, Nrf2 was activated by phosphorylation of c-Src, Pyk2 and Akt, which turned on transcription of HO-1 gene by binding to AREs binding site and enhancing ARE promoter activity. CONCLUSIONS AND IMPLICATIONS: Rosiglitazone induces HO-1 expression via either NOX/ROS/c-Src/Pyk2/Akt-dependent Nrf2 activation or PPARγ in HPAEpiCs and suppresses LPS-mediated inflammatory responses, suggesting that PPARγ agonists may be useful for protection against pulmonary inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Hipoglucemiantes/farmacología , Enfermedades Pulmonares/metabolismo , PPAR gamma/metabolismo , Rosiglitazona/farmacología , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Lipopolisacáridos/farmacología , Pulmón/citología , Masculino , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/agonistas , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
18.
Br J Pharmacol ; 175(3): 456-468, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29139546

RESUMEN

BACKGROUND AND PURPOSE: Haem oxygenase-1 (HO-1) could provide cytoprotection against various inflammatory diseases. However, the mechanisms underlying the protective effect of CO-releasing molecule-2 (CORM-2)-induced HO-1 expression against TNF-α-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unknown. EXPERIMENTAL APPROACH: CORM-2-induced HO-1 protein and mRNA expression, and signalling pathways were determined by Western blot and real-time PCR, coupled with respective pharmacological inhibitors or transfection with siRNAs. The effect of CORM-2 on TNF-α-induced increase in leukocyte counts in BAL fluid and VCAM-1 expression in lung was determined by cell counting and Western blot analysis. KEY RESULTS: CORM-2 attenuated the TNF-α-induced pulmonary haematoma, VCAM-1 expression and increase in leukocytes through an up-regulation of HO-1 in mice; this effect of CORM-2 was reversed by the HO-1 inhibitor zinc protoporphyrin IX. Furthermore, CORM-2 increased HO-1 protein and mRNA expression as well as the phosphorylation of PYK2, PKCα and ERK1/2 (p44/p42 MAPK) in HPAEpiCs; these effects were attenuated by their respective pharmacological inhibitors or transfection with siRNAs. Inhibition of PKCα by Gö6976 or Gö6983 attenuated CORM-2-induced stimulation of PKCα and ERK1/2 phosphorylation but had no effect on PYK2 phosphorylation. Moreover, inhibition of PYK2 by PF431396 reduced the phosphorylation of all three protein kinases. Finally, PYK2/PKCα/ERK1/2-mediated stimulation of activator protein 1 was shown to play a key role in CORM-2-induced HO-1 expression via an up-regulation of c-Fos mRNA. CONCLUSIONS AND IMPLICATIONS: CORM-2 activates a PYK2/PKCα/ERK1/2/AP-1 pathway leading to HO-1 expression in HPAEpiCs. This HO-1/CO system might have potential as a therapeutic target in pulmonary inflammation.


Asunto(s)
Quinasa 2 de Adhesión Focal/biosíntesis , Hemo-Oxigenasa 1/biosíntesis , Compuestos Organometálicos/farmacología , Neumonía/metabolismo , Proteína Quinasa C-alfa/biosíntesis , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Compuestos Organometálicos/uso terapéutico , Neumonía/inducido químicamente , Neumonía/prevención & control , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Regulación hacia Arriba/fisiología
19.
Mol Neurobiol ; 55(4): 3328-3343, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28497199

RESUMEN

Arachidonic acid (AA) is a major product of phospholipid hydrolysis catalyzed by phospholipase A2 during neurodegenerative diseases. AA exerts as a second messenger to regulate various signaling components which may be involved in different pathophysiological processes. Astrocytes are the main types of CNS resident cells which maintain and support the physiological function of brain. AA has been shown to induce ROS generation through activation of NADPH oxidases (Noxs) which may play a key role in the expression of heme oxygenase-1 (HO-1). Therefore, this study was designed to investigate the mechanisms underlying AA-induced HO-1 expression in rat brain astrocytes (RBA-1). We found that AA induced HO-1 protein and mRNA expression and promoter activity in RBA-1, which was mediated through the synthesis of 15-deoxy-Δ12,14-prostaglandin D2-activated peroxisome proliferator-activated receptor-γ (PPARγ) receptors. This note was confirmed by transfection with PPARγ small interfering RNAs (siRNA) which attenuated the AA-mediated responses. AA-induced HO-1 expression was mediated through Nox/ROS generation, which was inhibited by Nox inhibitors (diphenyleneiodonium and apocynin) and ROS scavengers (N-acetyl cysteine). Moreover, AA-induced HO-1 expression was mediated through phosphorylation of Src, Pyk2, platelet-derived growth factor, PI3K/Akt, and ERK1/2 which were inhibited by the pharmacological inhibitors including PP1, PF431396, AG1296, LY294002, and U0126 or by transfection with respective siRNAs. AA-enhanced Nrf2 expression and HO-1 promoter activity was inhibited by transfection with Nrf2 siRNA or by these pharmacological inhibitors. Furthermore, chromatin immunoprecipitation assay confirmed that Nrf2 and PPARγ were associated with the proximal antioxidant response element (ARE)-binding site on HO-1 promoter, suggesting that Nrf2/PPARγ are key transcription factors modulating HO-1 expression. AA-induced ARE promoter activity was also reduced by these pharmacological inhibitors. These findings suggested that AA increases formation of Nrf2 and PPARγ complex and binding with ARE1 binding site through Src, Pyk2, PI3K/Akt, and ERK1/2, which further induced HO-1 expression in RBA-1 cells.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Ácido Araquidónico/farmacología , Astrocitos/metabolismo , Encéfalo/citología , Hemo-Oxigenasa 1/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Quinasa 2 de Adhesión Focal/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Biológicos , NADPH Oxidasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
20.
Mol Neurobiol ; 54(5): 3476-3491, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27181591

RESUMEN

Neuroinflammation is a hallmark of neurodegenerative disorders in the central nerve system (CNS). Thrombin has been known as one of the factors in pathological processes including migration, blood-brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. Thrombin has been shown to be a regulator of matrix metalloproteinase (MMPs) expression leading to cell migration. Among MMPs, the elevated expression of MMP-9 has been observed in patients with brain diseases, which may contribute to the pathology of neuroinflammatory and neurodegenerative diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells were not completely understood. Here, we used gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay to demonstrate that thrombin induced the expression of pro-form MMP-9 protein and messenger RNA (mRNA), and promoter activity in SK-N-SH cells, which were attenuated by pretreatment with the pharmacological inhibitor of protease-activated receptor-1 (PAR-1, SCH79797), Gi-coupled receptor (GPA2), c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), or AP-1 (TanshinoneIIA) and transfection with small interfering RNA (siRNA) of PAR-1, Gi, c-Src, Pyk2, EGFR, Akt, p44, p42, or c-Jun. Moreover, thrombin-stimulated c-Src, Pyk2, EGFR, Akt, p42/p44 MAPK, or c-Jun phosphorylation was attenuated by their respective inhibitor of PP1, PF431396, AG1478, SH-5, U0126, or TanshinoneIIA. Finally, pretreatment with these inhibitors also blocked thrombin-induced SK-N-SH cell migration. Our results concluded that thrombin binding to PAR-1 receptor activated Gi-protein/c-Src/Pyk2/EGFR/PI3K/Akt/p42/p44 MAPK cascade, which in turn elicited AP-1 activation and ultimately evoked MMP-9 expression and cell migration in SK-N-SH cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Receptor PAR-1/metabolismo , Trombina/farmacología , Factor de Transcripción AP-1/metabolismo , Familia-src Quinasas/metabolismo , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA