Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant J ; 113(2): 387-401, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36471650

RESUMEN

Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 µm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , NAD/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Formiatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 13: 826954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371150

RESUMEN

Aluminum (Al) toxicity constitutes one of the major limiting factors of plant growth and development on acid soils, which comprises approximately 50% of potentially arable lands worldwide. When suffering Al toxicity, plants reprogram the transcription of genes, which activates physiological and metabolic pathways to deal with the toxicity. Here, we report the role of a NAM, ATAF1, 2 and CUC2 (NAC) transcription factor (TF) in tomato Al tolerance. Among 53 NAC TFs in tomatoes, SlNAC063 was most abundantly expressed in root apex and significantly induced by Al stress. Furthermore, the expression of SlNAC063 was not induced by other metals. Meanwhile, the SlNAC063 protein was localized at the nucleus and has transcriptional activation potentials in yeast. By constructing CRISPR/Cas9 knockout mutants, we found that slnac063 mutants displayed increased sensitivity to Al compared to wild-type plants. However, the mutants accumulated even less Al than wild-type (WT) plants, suggesting that internal tolerance mechanisms but not external exclusion mechanisms are implicated in SlNAC063-mediated Al tolerance in tomatoes. Further comparative RNA-sequencing analysis revealed that only 45 Al-responsive genes were positively regulated by SlNAC063, although the expression of thousands of genes (1,557 upregulated and 636 downregulated) was found to be affected in slnac063 mutants in the absence of Al stress. The kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that SlNAC063-mediated Al-responsive genes were enriched in "phenylpropanoid metabolism," "fatty acid metabolism," and "dicarboxylate metabolism," indicating that SlNAC063 regulates metabolisms in response to Al stress. Quantitative real-time (RT)-PCR analysis showed that the expression of SlAAE3-1 was repressed by SlNAC063 in the absence of Al. However, the expression of SlAAE3-1 was dependent on SlNAC063 in the presence of Al stress. Taken together, our results demonstrate that a NAC TF SlNAC063 is involved in tomato Al tolerance by regulating the expression of genes involved in metabolism, and SlNAC063 is required for Al-induced expression of SlAAE3-1.

3.
Front Plant Sci ; 12: 754147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925406

RESUMEN

In response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characterized to be involved in growth, development, biotic, and abiotic stresses via mediating diverse metabolic pathways. However, less information is available about AAEs superfamily in tomato (Solanum lycopersicum), the highest value fruit and vegetable crop globally. In this study, we aimed to identify tomato AAEs superfamily and investigate potential functions with respect to aluminum (Al) stress that represents one of the major factors limiting crop productivity on acid soils worldwide. Fifty-three AAE genes of tomato were identified and named on the basis of phylogenetic relationships between Arabidopsis and tomato. The phylogenetic analysis showed that AAEs could be classified into six clades; however, clade III contains no AAE genes of tomato. Synteny analyses revealed tomato vegetable paralogs and Arabidopsis orthologs. The RNA-seq and quantitative reverse-transcriptase PCR (qRT-PCR) analysis indicated that 9 out of 53 AAEs genes were significantly up- or downregulated by Al stress. Numerous cis-acting elements implicated in biotic and abiotic stresses were detected in the promoter regions of SlAAEs. As the most abundantly expressed gene in root apex and highly induced by Al, there are many potential STOP1 cis-acting elements present in the promoter of SlAAE3-1, and its expression in root apex was specific to Al. Finally, transgenic tobacco lines overexpressing SlAAE3-1 displayed increased tolerance to Al. Altogether, our results pave the way for further studies on the functional characterization of SlAAE genes in tomato with a wish of improvement in tomato crop in the future.

4.
BMC Genomics ; 21(1): 288, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264854

RESUMEN

BACKGROUND: The family of NAC proteins (NAM, ATAF1/2, and CUC2) represent a class of large plant-specific transcription factors. However, identification and functional surveys of NAC genes of tomato (Solanum lycopersicum) remain unstudied, despite the tomato genome being decoded for several years. This study aims to identify the NAC gene family and investigate their potential roles in responding to Al stress. RESULTS: Ninety-three NAC genes were identified and named in accordance with their chromosome location. Phylogenetic analysis found SlNACs are broadly distributed in 5 groups. Gene expression analysis showed that SlNACs had different expression levels in various tissues and at different fruit development stages. Cycloheximide treatment and qRT-PCR analysis indicated that SlNACs may aid regulation of tomato in response to Al stress, 19 of which were significantly up- or down-regulated in roots of tomato following Al stress. CONCLUSION: This work establishes a knowledge base for further studies on biological functions of SlNACs in tomato and will aid in improving agricultural traits of tomato in the future.


Asunto(s)
Aluminio/administración & dosificación , Perfilación de la Expresión Génica/métodos , Solanum lycopersicum/fisiología , Factores de Transcripción/genética , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Cicloheximida/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Familia de Multigenes/efectos de los fármacos , Filogenia , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico , Factores de Transcripción/efectos de los fármacos
5.
J Zhejiang Univ Sci B ; 20(6): 513-527, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31090277

RESUMEN

Aluminum (Al) is the most abundant metal element in the earth's crust. On acid soils, at pH 5.5 or lower, part of insoluble Al-containing minerals become solubilized into soil solution, with resultant highly toxic effects on plant growth and development. Nevertheless, some plants have developed Al-tolerance mechanisms that enable them to counteract this Al toxicity. One such well-documented mechanism is the Al-induced secretion of organic acid anions, including citrate, malate, and oxalate, from plant roots. Once secreted, these anions chelate external Al ions, thus protecting the secreting plant from Al toxicity. Genes encoding the citrate and malate transporters responsible for secretion have been identified and characterized, and accumulating evidence indicates that regulation of the expression of these transporter genes is critical for plant Al tolerance. In this review, we outline the recent history of research into plant Al-tolerance mechanisms, with special emphasis on the physiology of Al-induced secretion of organic acid anions from plant roots. In particular, we summarize the identification of genes encoding organic acid transporters and review current understanding of genes regulating organic acid secretion. We also discuss the possible signaling pathways regulating the expression of organic acid transporter genes.


Asunto(s)
Aluminio/toxicidad , Raíces de Plantas/efectos de los fármacos , Aniones , Transporte Biológico/efectos de los fármacos , Ácido Cítrico/metabolismo , Malatos/metabolismo , Ácido Oxálico/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología
6.
New Phytol ; 219(1): 149-162, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29658118

RESUMEN

Whilst WRKY transcription factors are known to be involved in diverse plant responses to biotic stresses, their involvement in abiotic stress tolerance is poorly understood. OsFRDL4, encoding a citrate transporter, has been reported to be regulated by ALUMINUM (Al) RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) in rice, but whether it is also regulated by other transcription factors is unknown. We define the role of OsWRKY22 in response to Al stress in rice by using mutation and transgenic complementation assays, and characterize the regulation of OsFRDL4 by OsWRKY22 via yeas one-hybrid, electrophoretic mobility shift assay and ChIP-quantitative PCR. We demonstrate that loss of OsWRKY22 function conferred by the oswrky22 T-DNA insertion allele causes enhanced sensitivity to Al stress, and a reduction in Al-induced citrate secretion. We next show that OsWRKY22 is localized in the nucleus, functions as a transcriptional activator and is able to bind to the promoter of OsFRDL4 via W-box elements. Finally, we find that both OsFRDL4 expression and Al-induced citrate secretion are significantly lower in art1 oswrky22 double mutants than in the respective single mutants. We conclude that OsWRKY22 promotes Al-induced increases in OsFRDL4 expression, thus enhancing Al-induced citrate secretion and Al tolerance in rice.


Asunto(s)
Aluminio/toxicidad , Proteínas Portadoras/metabolismo , Ácido Cítrico/metabolismo , Oryza/genética , Factores de Transcripción/metabolismo , Proteínas Portadoras/genética , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Estrés Fisiológico , Factores de Transcripción/genética
7.
Plant Cell Environ ; 41(4): 809-822, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29346835

RESUMEN

Aluminum (Al)-induced organic acid secretion from the root apex is an important Al resistance mechanism. However, it remains unclear how plants fine-tune root organic acid secretion which can contribute significantly to the loss of fixed carbon from the plant. Here, we demonstrate that Al-induced citrate secretion from the rice bean root apex is biphasic, consisting of an early phase with low secretion and a later phase of large citrate secretion. We isolated and characterized VuMATE2 as a possible second citrate transporter in rice bean functioning in tandem with VuMATE1, which we previously identified. The time-dependent kinetics of VuMATE2 expression correlates well with the kinetics of early phase root citrate secretion. Ectopic expression of VuMATE2 in Arabidopsis resulted in increased root citrate secretion and Al resistance. Electrophysiological analysis of Xenopus oocytes expressing VuMATE2 indicated VuMATE2 mediates anion efflux. However, the expression regulation of VuMATE2 differs from VuMATE1. While a protein translation inhibitor suppressed Al-induced VuMATE1 expression, it releases VuMATE2 expression. Yeast one-hybrid assays demonstrated that a previously identified transcription factor, VuSTOP1, interacts with the VuMATE2 promoter at a GGGAGG cis-acting motif. Thus, we demonstrate that plants adapt to Al toxicity by fine-tuning root citrate secretion with two separate root citrate transport systems.


Asunto(s)
Aluminio/toxicidad , Proteínas Portadoras/metabolismo , Ácido Cítrico/metabolismo , Meristema/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Plantas/metabolismo , Vigna/metabolismo , Animales , Animales Modificados Genéticamente , Arabidopsis , Proteínas Portadoras/genética , Perfilación de la Expresión Génica , Meristema/efectos de los fármacos , Oocitos/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Técnicas del Sistema de Dos Híbridos , Vigna/efectos de los fármacos , Vigna/genética , Xenopus laevis
8.
Plant Physiol ; 172(3): 1679-1690, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650448

RESUMEN

Acyl Activating Enzyme3 (AAE3) was identified to be involved in the catabolism of oxalate, which is critical for seed development and defense against fungal pathogens. However, the role of AAE3 protein in abiotic stress responses is unknown. Here, we investigated the role of rice bean (Vigna umbellata) VuAAE3 in Al tolerance. Recombinant VuAAE3 protein has specific activity against oxalate, with Km = 121 ± 8.2 µm and Vmax of 7.7 ± 0.88 µmol min-1 mg-1 protein, indicating it functions as an oxalyl-CoA synthetase. VuAAE3-GFP localization suggested that this enzyme is a soluble protein with no specific subcellular localization. Quantitative reverse transcription-PCR and VuAAE3 promoter-GUS reporter analysis showed that the expression induction of VuAAE3 is mainly confined to rice bean root tips. Accumulation of oxalate was induced rapidly by Al stress in rice bean root tips, and exogenous application of oxalate resulted in the inhibition of root elongation and VuAAE3 expression induction, suggesting that oxalate accumulation is involved in Al-induced root growth inhibition. Furthermore, overexpression of VuAAE3 in tobacco (Nicotiana tabacum) resulted in the increase of Al tolerance, which was associated with the decrease of oxalate accumulation. In addition, NtMATE and NtALS3 expression showed no difference between transgenic lines and wild-type plants. Taken together, our results suggest that VuAAE3-dependent turnover of oxalate plays a critical role in Al tolerance mechanisms.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Aluminio/toxicidad , Coenzima A Ligasas/metabolismo , Oxalatos/metabolismo , Proteínas de Plantas/metabolismo , Vigna/enzimología , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Clonación Molecular , Coenzima A Ligasas/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especificidad de Órganos/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Análisis de Secuencia de Proteína , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/fisiología , Vigna/efectos de los fármacos , Vigna/genética , Vigna/metabolismo
9.
Plant Physiol ; 171(1): 294-305, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27021188

RESUMEN

Formate dehydrogenase (FDH) is involved in various higher plant abiotic stress responses. Here, we investigated the role of rice bean (Vigna umbellata) VuFDH in Al and low pH (H(+)) tolerance. Screening of various potential substrates for the VuFDH protein demonstrated that it functions as a formate dehydrogenase. Quantitative reverse transcription-PCR and histochemical analysis showed that the expression of VuFDH is induced in rice bean root tips by Al or H(+) stresses. Fluorescence microscopic observation of VuFDH-GFP in transgenic Arabidopsis plants indicated that VuFDH is localized in the mitochondria. Accumulation of formate is induced by Al and H(+) stress in rice bean root tips, and exogenous application of formate increases internal formate content that results in the inhibition of root elongation and induction of VuFDH expression, suggesting that formate accumulation is involved in both H(+)- and Al-induced root growth inhibition. Over-expression of VuFDH in tobacco (Nicotiana tabacum) results in decreased sensitivity to Al and H(+) stress due to less production of formate in the transgenic tobacco lines under Al and H(+) stresses. Moreover, NtMATE and NtALS3 expression showed no changes versus wild type in these over-expression lines, suggesting that herein known Al-resistant mechanisms are not involved. Thus, the increased Al tolerance of VuFDH over-expression lines is likely attributable to their decreased Al-induced formate production. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms, and suggest a possible new route toward the improvement of plant performance in acidic soils, where Al toxicity and H(+) stress coexist.


Asunto(s)
Aluminio/toxicidad , Formiato Deshidrogenasas/metabolismo , Proteínas de Plantas/metabolismo , Vigna/efectos de los fármacos , Vigna/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Clonación Molecular , Formiato Deshidrogenasas/genética , Formiatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/efectos de los fármacos , Nicotiana/genética , Vigna/metabolismo
10.
Plant Signal Behav ; 11(2): e1131371, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26689896

RESUMEN

Aluminum (Al) and proton (H(+)) are 2 coexisting rhizotoxicities limiting plant growth in acid soils. Sensitive to Proton Rhizotoxicity (STOP) 1-like zinc finger transcription factors play important roles in regulating expression of downstream genes involved in tolerance mechanism of either stress. In this mini-review, we summarized recent advances in characterizing STOP1-like proteins with respect to plant Al and H(+) tolerance. The possible involvement of structure-function of STOP1-like proteins in differential regulation of Al and H(+) tolerance are discussed. In addition, we also direct research in this area to protein phosphorylation.


Asunto(s)
Aluminio/farmacología , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Protones , Estrés Fisiológico/genética , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Suelo/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Clin Psychopharmacol ; 35(4): 406-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26066335

RESUMEN

Major depressive disorder is a devastating mental illness leading to a lifetime prevalence of higher than 16% on individuals. The treatment delay and inevitable adverse effects are major limitations of current depression interventions. Emerging evidence indicates that curcumin produced significant antidepressant properties in depression in both rodents and humans without adverse effects. Therefore, it is necessary to further clarify the antidepressant actions of curcumin and the underlying mechanism in depressed patients. A total of 108 male adults aged between 31 and 59 years were systematically recruited in Tianjin Anding Hospital. Subjects were administered the Chinese version of 17-item Hamilton Depression Rating Scale and Montgomery-Asberg Depression Rating Scale that measures different scores of depressive symptoms. The subjects were asked to take 2 capsules containing either 1000 mg of curcumin or placebo soybean powder daily for 6 weeks on the basis of their current antidepressant medications. The plasma levels of interleukin 1ß, tumor necrosis factor α, brain-derived neurotrophic factor, and salivary cortisol were measured by enzyme-linked immunosorbent assay before and after curcumin or placebo treatment during the 6-week procedure. Chronic supplementation with curcumin produced significant antidepressant behavioral response in depressed patients by reduction of 17-item Hamilton Depression Rating Scale and Montgomery-Asberg Depression Rating Scale scores. Furthermore, curcumin decreases inflammatory cytokines interleukin 1ß and tumor necrosis factor α level, increases plasma brain-derived neurotrophic factor levels, and decreases salivary cortisol concentrations compared with placebo group. These findings indicate the potential benefits of further implications of supplementary administration of curcumin to reverse the development of depression and enhance the outcome of antidepressants treatment in major depressive disorder.


Asunto(s)
Antidepresivos/administración & dosificación , Citalopram/administración & dosificación , Curcumina/administración & dosificación , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/tratamiento farmacológico , Suplementos Dietéticos , Adulto , Factor Neurotrófico Derivado del Encéfalo/sangre , Trastorno Depresivo Mayor/sangre , Método Doble Ciego , Humanos , Hidrocortisona/antagonistas & inhibidores , Hidrocortisona/sangre , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Proyectos Piloto , Resultado del Tratamiento
12.
New Phytol ; 208(2): 456-68, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25970766

RESUMEN

The rice bean (Vigna umbellata) root apex specifically secretes citrate through expression activation of Vigna umbellata Multidrug and Toxic Compound Extrusion 1 (VuMATE1) under aluminum (Al(3+) ) stress. However, the underlying mechanisms regulating VuMATE1 expression remain unknown. We isolated and characterized a gene encoding Sensitive to Proton Rhizotoxicity1 (STOP1)-like protein, VuSTOP1, from rice bean. The role of VuSTOP1 in regulating VuMATE1 expression was investigated using the yeast one-hybrid assay. We characterized the function of VuSTOP1 in Al(3)  (+)  - and H(+) -tolerance using in planta complementation assays. We demonstrated that VuSTOP1 has transactivation potential. We found that VuSTOP1 expression is inducible by Al(3+) and H(+) stress. However, although VuSTOP1 binds to the promoter of VuMATE1, the inconsistent tissue localization patterns of VuSTOP1 and VuMATE1 preclude VuSTOP1 as the major factor regulating VuMATE1 expression. In addition, when a protein translation inhibitor increased expression of VuSTOP1, VuMATE1 expression was inhibited. In planta complementation assay demonstrated that VuSTOP1 could fully restore expression of genes involved in H(+) tolerance, but could only partially restore expression of AtMATE. We conclude that VuSTOP1 plays a major role in H(+) tolerance, but only a minor role in Al(3+) tolerance. The differential transcriptional regulation of VuSTOP1 and VuMATE1 reveals a complex regulatory system controlling VuMATE1 expression.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Aluminio/toxicidad , Fabaceae/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Arabidopsis/fisiología , Secuencia de Bases , Clonación Molecular , Cicloheximida/farmacología , Fabaceae/efectos de los fármacos , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucuronidasa/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Mutación/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Protones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
13.
J Proteomics ; 98: 189-205, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24412201

RESUMEN

One of the major limitations to crop growth on acid soils is the prevalence of soluble aluminum ions (Al(3+)). Rice (Oryza sativa L.) has been reported to be highly Al tolerant; however, large-scale proteomic data of rice in response to Al(3+) are still very scanty. Here, we used an iTRAQ-based quantitative proteomics approach for comparative analysis of the expression profiles of proteins in rice roots in response to Al(3+) at an early phase. A total of 700 distinct proteins (homologous proteins grouped together) with >95% confidence were identified. Among them, 106 proteins were differentially expressed upon Al(3+) toxicity in sensitive and tolerant cultivars. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was the most significantly up-regulated biochemical process in response to excess Al(3+). The mRNA levels of eight proteins mapped in the glycolysis/gluconeogenesis were further analyzed by qPCR and the expression levels of all the eight genes were higher in tolerant cultivar than in sensitive cultivar, suggesting that these compounds may promote Al tolerance by modulating the production of available energy. Although the exact roles of these putative tolerance proteins remain to be examined, our data lead to a better understanding of the Al tolerance mechanisms in rice plants through the proteomics approach. BIOLOGICAL SIGNIFICANCE: Aluminum (mainly Al(3+)) is one of the major limitations to the agricultural productivity on acid soils and causes heavy yield loss every year. Rice has been reported to be highly Al tolerant; however, the mechanisms of rice Al tolerance are still not fully understood. Here, a combined proteomics, bioinformatics and qPCR analysis revealed that Al(3+) invasion caused complex proteomic changes in rice roots involving energy, stress and defense, protein turnover, metabolism, signal transduction, transport and intracellular traffic, cell structure, cell growth/division, and transcription. Promotion of the glycolytic/gluconeogenetic pathway in roots appeared crucially important for Al tolerance. These results lead to a better understanding of the Al tolerance mechanisms in rice and help to improve plant performance on acid soils, eventually to increase the crop production.


Asunto(s)
Aluminio/farmacología , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , Raíces de Plantas/metabolismo , Proteoma/biosíntesis , Estrés Fisiológico/efectos de los fármacos , Proteómica
14.
New Phytol ; 197(3): 815-824, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23252371

RESUMEN

Here we report the function of a general regulatory factor, GENERAL REGULATORY FACTOR11 (GRF11), in terms of the iron (Fe) deficiency response. Physiological and molecular responses of the loss-of-function Arabidopsis thaliana grf11 mutant to Fe supply were investigated. Genes involved in posttranscriptional regulation of FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) were also analyzed. In addition, the molecular link between the signaling molecule nitric oxide (NO) and Fe deficiency responses was further dissected. Our results suggest that GRF11 is necessary for induction of Fe-deficiency-tolerance mechanisms. The FIT protein can bind to the promoter of GRF11, which contains an E-box motif. GRF11 also positively affects FIT transcription but has no influence on the genes involved in posttranscriptional regulation of FIT. Furthermore, NO positively regulates GRF11 induction upon the onset of Fe deficiency. We propose that, upon the onset of Fe deficiency, induction of FIT expression is dependent on GRF11, which acts downstream of NO to mediate Fe deficiency responses.


Asunto(s)
Proteínas 14-3-3/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Transporte de Catión/metabolismo , FMN Reductasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Modelos Biológicos , Mutagénesis Insercional , Nitrato-Reductasa/genética , Óxido Nítrico Sintasa/genética , Fenotipo , Plantas Modificadas Genéticamente/metabolismo , ATPasas de Translocación de Protón/metabolismo
15.
Plant Cell ; 24(11): 4731-47, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23204407

RESUMEN

Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of (27)Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación Enzimológica de la Expresión Génica , Glucanos/metabolismo , Xilanos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Quelantes/análisis , Quelantes/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Glucanos/análisis , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Mutagénesis Insercional , Especificidad de Órganos , Fenotipo , Filogenia , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/análisis , Polisacáridos/metabolismo , Proteínas Recombinantes de Fusión , Plantones/química , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Análisis de Secuencia de ADN , Xilanos/análisis
16.
Plant Cell Environ ; 34(7): 1055-64, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21388421

RESUMEN

The mechanisms of heavy metal resistance in plants can be classified into internal tolerance and exclusion mechanisms, but exclusion of heavy metals with the help of organic acids secretion has not been well documented. Here we demonstrated the contribution of oxalate secretion to cadmium (Cd) exclusion and resistance in tomato. Different Cd resistance between two tomato cultivars was evaluated by relative root elongation (RRE) and Cd accumulation. Cultivar 'Micro-Tom' showed better growth and lower Cd content in roots than 'Hezuo903' at different Cd concentrations not only in short-term hydroponic experiment but also in long-term hydroponic and soil experiments, indicating that the genotypic difference in Cd resistance is related to the exclusion of Cd from roots. 'Micro-Tom' had greater ability to secrete oxalate, suggesting that oxalate secretion might contribute to Cd resistance. Cd-induced secretion of oxalate was localized to root apex at which the majority of Cd accumulated. Phenylglyoxal, an anion-channel inhibitor, effectively blocked Cd-induced oxalate secretion and aggravated Cd toxicity while exogenous oxalate supply ameliorated Cd toxicity efficiently. These results indicated that the oxalate secreted from the root apex helps to exclude Cd from entering tomato roots, thus contributes to Cd resistance in the Cd-resistant tomato cultivar.


Asunto(s)
Cadmio/farmacología , Oxalatos/metabolismo , Raíces de Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Cadmio/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/crecimiento & desarrollo , Oxalatos/antagonistas & inhibidores , Fenilglioxal/farmacología , Exudados de Plantas/química , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Suelo/química
17.
Planta ; 234(2): 281-91, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21424534

RESUMEN

We demonstrated that aluminum (Al)-induced oxalate secretion and plasma membrane (PM) H(+)-ATPase activity in tomato (Lycopersicon esculentum 'Hezuo903') roots were poorly correlated. In addition, vanadate, an inhibitor of PM H(+)-ATPase, had no effect on Al-induced oxalate secretion, but significantly inhibited enzyme activity. An anion channel inhibitor phenylglyoxal inhibited oxalate secretion, but not PM H(+)-ATPase activity. Exposure of tomato roots to 10 µM LaCl(3) also stimulated PM H(+)-ATPase activity; however, La failed to induce oxalate secretion. Furthermore, Al-induced changes of PM H(+)-ATPase activity were not associated with oxalate secretion in two tomato cultivars differing in the ability to secrete oxalate under Al stress. These results indicate that Al independently regulates oxalate secretion and PM H(+)-ATPase activity in tomato roots. Analysis of expression levels of PM H(+)-ATPase genes by real-time reverse transcription-PCR and protein by Western blot and immunodetection revealed that the regulation of PM H(+)-ATPase in response to Al was subjected to transcriptional and posttranscriptional control. However, since neither transcriptional level of genes nor translational level of proteins directly relate to the enzyme activity, posttranslational modification of PM H(+)-ATPase under Al stress likely contributes to changes in activity of this protein.


Asunto(s)
Aluminio/farmacología , Oxalatos/metabolismo , ATPasas de Translocación de Protón/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Relación Dosis-Respuesta a Droga , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lantano/farmacología , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Oxalatos/análisis , Fenilglioxal/farmacología , Exudados de Plantas/análisis , Exudados de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico , Vanadatos/farmacología
18.
Plant Physiol ; 155(4): 1885-92, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21285327

RESUMEN

The cell wall (CW) has been recognized as the major target of aluminum (Al) toxicity. However, the components responsible for Al accumulation and the mechanisms of Al-induced CW function disruption are still elusive. The contribution of different CW components (pectin, hemicellulose 1 [HC1], and HC2) to adsorb Al and the effect of Al on xyloglucan endotransglucosylase/hydrolyase activity were investigated in Arabidopsis (Arabidopsis thaliana) in this study. A fractionation procedure was optimized to effectively extract different CW components, especially to prevent the HC fraction from pectin contamination. When CW materials extracted from Al-treated roots (50 µm Al for 24 h) were fractionated, about 75% of CW Al accumulated in the HC1 fraction. A time-dependent kinetic study showed that only when the HC1 fraction was removed was the amount of Al adsorbed decreased sharply. In vivo localization of xyloglucan endotransglucosylase (XET) activity showed that Al greatly inhibited this enzyme activity within 30 min of exposure, which was concomitant with Al-induced callose deposition in roots. Results from real-time reverse transcription-polymerase chain reaction indicated that three genes may constitute the major contributors to XET activity and that the inhibition of XET activity by Al is caused by transcriptional regulation. These results, to our knowledge for the first time, demonstrate that HC is the major pool for Al accumulation. Furthermore, Al-induced reduction in XET activity could play an important role in Al-induced root growth inhibition.


Asunto(s)
Aluminio/metabolismo , Arabidopsis/metabolismo , Pared Celular/química , Raíces de Plantas/crecimiento & desarrollo , Polisacáridos/metabolismo , Adsorción , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/metabolismo , Raíces de Plantas/metabolismo , ARN de Planta/genética
19.
Plant Physiol ; 154(2): 810-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20699398

RESUMEN

In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.


Asunto(s)
Arabidopsis/enzimología , FMN Reductasa/metabolismo , Ácidos Indolacéticos/metabolismo , Deficiencias de Hierro , Óxido Nítrico/metabolismo , Raíces de Plantas/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , FMN Reductasa/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Raíces de Plantas/genética
20.
J Integr Plant Biol ; 51(6): 574-80, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19522816

RESUMEN

Aluminum-induced secretion of organic acids from the root apex has been demonstrated to be one major Al resistance mechanism in plants. However, whether the organic acid concentration is high enough to detoxify Al in the growth medium is frequently questioned. The genotypes of Al-resistant wheat, Cassia tora L. and buckwheat secrete malate, citrate and oxalate, respectively. In the present study we found that at a 35% inhibition of root elongation, the Al activities in the solution were 10, 20, and 50 muM with the corresponding malate, citrate, and oxalate exudation at the rates of 15, 20 and 21 nmol/cm(2) per 12 h, respectively, for the above three plant species. When exogenous organic acids were added to ameliorate Al toxicity, twofold and eightfold higher oxalate and malate concentrations were required to produce the equal effect by citrate. After the root apical cell walls were isolated and preincubated in 1 mM malate, oxalate or citrate solution overnight, the total amount of Al adsorbed to the cell walls all decreased significantly to a similar level, implying that these organic acids own an equal ability to protect the cell walls from binding Al. These findings suggest that protection of cell walls from binding Al by organic acids may contribute significantly to Al resistance.


Asunto(s)
Aluminio/metabolismo , Aluminio/farmacología , Ácidos Carboxílicos/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Magnoliopsida/efectos de los fármacos , Adsorción/efectos de los fármacos , Aluminio/toxicidad , Cassia/citología , Cassia/efectos de los fármacos , Cassia/metabolismo , Citratos/metabolismo , Fagopyrum/citología , Fagopyrum/efectos de los fármacos , Fagopyrum/metabolismo , Cinética , Magnoliopsida/citología , Magnoliopsida/metabolismo , Malatos/metabolismo , Oxalatos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Triticum/citología , Triticum/efectos de los fármacos , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA