Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
1.
Front Pharmacol ; 15: 1417532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086397

RESUMEN

The incidence of common gynecological malignancies remains high, with current treatments facing multiple limitations and adverse effects. Thus, continuing the search for safe and effective oncologic treatment strategies continues. Resveratrol (RES), a natural non-flavonoid polyphenolic compound, is widely found in various plants and fruits, such as grapes, Reynoutria japonica Houtt., peanuts, and berries. RES possesses diverse biological properties, including neuroprotective, antitumor, anti-inflammatory, and osteoporosis inhibition effects. Notably, RES is broadly applicable in antitumor therapy, particularly for treating gynecological tumors (cervical, endometrial, and ovarian carcinomas). RES exerts antitumor effects by promoting tumor cell apoptosis, inhibiting cell proliferation, invasion, and metastasis, regulating tumor cell autophagy, and enhancing the efficacy of antitumor drugs while minimizing their toxic side effects. However, comprehensive reviews on the role of RES in combating gynecological tumors and its mechanisms of action are lacking. This review aims to fill this gap by examining the RES antitumor mechanisms of action in gynecological tumors, providing valuable insights for clinical treatment.

2.
Arch Dermatol Res ; 316(7): 447, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958761

RESUMEN

Malignant melanoma presents a formidable challenge due to its aggressive metastatic behavior and limited response to current treatments. To address this, our study delves into the impact of anlotinib on angiogenesis and vasculogenic mimicry using malignant melanoma cells and human umbilical vein endothelial cells. Evaluating tubular structure formation, cell proliferation, migration, invasion, and key signaling molecules in angiogenesis, we demonstrated that anlotinib exerts a dose-dependent inhibition on tubular structures and effectively suppresses cell growth and invasion in both cell types. Furthermore, in a mouse xenograft model, anlotinib treatment resulted in reduced tumor growth and vascular density. Notably, the downregulation of VEGFR-2, FGFR-1, PDGFR-ß, and PI3K underscored the multitargeted antitumor activity of anlotinib. Our findings emphasize the therapeutic potential of anlotinib in targeting angiogenesis and vasculogenic mimicry, contributing to the development of novel strategies for combating malignant melanoma.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Indoles , Melanoma , Neovascularización Patológica , Quinolinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Ensayos Antitumor por Modelo de Xenoinjerto , Quinolinas/farmacología , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Animales , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Indoles/farmacología , Indoles/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Ratones Desnudos , Angiogénesis
3.
J Transl Med ; 22(1): 649, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992710

RESUMEN

BACKGROUND: Renal interstitial fibrosis (RIF) is a progressive, irreversible terminal kidney disease with a poor prognosis and high mortality. Angiopoietin-like 4 (ANGPTL4) is known to be associated with fibrosis in various organs, but its impact on the RIF process remains unclear. This study aimed to elucidate the role and underlying mechanisms of ANGPTL4 in the progression of RIF. METHODS: In vivo, a chronic kidney disease (CKD) rat model of renal interstitial fibrosis was established via intragastric administration of adenine at different time points (4 and 6 weeks). Blood and urine samples were collected to assess renal function and 24-h urinary protein levels. Kidney tissues were subjected to HE and Masson staining for pathological observation. Immunohistochemistry and real-time quantitative PCR (qRT‒PCR) were performed to evaluate the expression of ANGPTL4 and hypoxia-inducible factor-1α (HIF-1α), followed by Pearson correlation analysis. Subsequently, kidney biopsy tissues from 11 CKD patients (6 with RIF and 5 without RIF) were subjected to immunohistochemical staining to validate the expression of ANGPTL4. In vitro, a fibrosis model of human renal tubular epithelial cells (HK2) was established through hypoxic stimulation. Subsequently, an HIF-1α inhibitor (2-MeOE2) was used, and ANGPTL4 was manipulated using siRNA or plasmid overexpression. Changes in ANGPTL4 and fibrosis markers were analyzed through Western blotting, qRT‒PCR, and immunofluorescence. RESULTS: ANGPTL4 was significantly upregulated in the CKD rat model and was significantly positively correlated with renal injury markers, the fibrotic area, and HIF-1α. These results were confirmed by clinical samples, which showed a significant increase in the expression level of ANGPTL4 in CKD patients with RIF, which was positively correlated with HIF-1α. Further in vitro studies indicated that the expression of ANGPTL4 is regulated by HIF-1α, which in turn is subject to negative feedback regulation by ANGPTL4. Moreover, modulation of ANGPTL4 expression influences the progression of fibrosis in HK2 cells. CONCLUSION: Our findings indicate that ANGPTL4 is a key regulatory factor in renal fibrosis, forming a loop with HIF-1α, potentially serving as a novel therapeutic target for RIF.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Fibrosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Riñón , Ratas Sprague-Dawley , Animales , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Humanos , Masculino , Riñón/patología , Riñón/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Ratas , Línea Celular , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Persona de Mediana Edad
4.
Heliyon ; 10(12): e32913, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988519

RESUMEN

While the regulatory roles of circular RNAs (circRNAs) and zinc finger CCCH-type containing 13 (ZC3H13) were previously reported in various human cancers, the mechanisms underlying their interaction in papillary thyroid cancer (PTC) remain unclear. We aimed to determine the role of hsa_circ_0101050 and its regulatory relationship with ZC3H13 in PTC. The expression levels of hsa_circ_0101050 and ZC3H13 were determined in tumor samples and adjacent normal tissues from 46 patients with PTC and in two PTC cell lines (IHH-4 and PTC-1) using quantitative reverse transcription-polymerase chain reaction. The roles of hsa_circ_0101050 and ZC3H13 in cell viability, wound healing, and migration were determined using knockdown and overexpression approaches in PTC cell lines, and a xenograft model in nude mice was used to determine their role in vivo. Methylated RNA immunoprecipitation assay was used to analyze N6-methyladenosine (m6A) modification of hsa_circ_0101050 by ZC3H13. We found hsa_circ_0101050 overexpression and ZC3H13 downregulation in PTC samples and PTC cell lines. In PTC cell lines, silencing hsa_circ_0101050 reduced cell viability and migration whereas its overexpression promoted an aggressive PTC phenotype. ZC3H13 increased the m6A modification of hsa_circ_0101050 and repressed its expression. ZC3H13 overexpression inhibited PTC cell viability, migration, and invasion, which were reversed in cells overexpressing hsa_circ_0101050. Taken together, these results suggested that the downregulation of hsa_circ_0101050 mediated by ZC3H13 through m6A modification contributed to its oncogenic effect in PTC development, revealing the ZC3H13-m6A-hsa_circ_0101050 as a potential therapeutic target in PTC.

5.
Natl Sci Rev ; 11(6): nwae142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966071

RESUMEN

Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.

6.
Genome Med ; 16(1): 92, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044302

RESUMEN

BACKGROUND: Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. METHODS: We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). RESULTS: We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. CONCLUSIONS: These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Persona de Mediana Edad , Negro o Afroamericano/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transcriptoma , Blanco/genética
7.
Life Sci ; 352: 122898, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38997061

RESUMEN

Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.


Asunto(s)
Enfermedades Otorrinolaringológicas , Humanos , Enfermedades Otorrinolaringológicas/terapia , Animales , Condrocitos , Exosomas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre/métodos , Células Madre
8.
Biomed Pharmacother ; 177: 117064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964179

RESUMEN

Macrophages play a critical role in the body's defense against cancer by phagocytosing tumor cells, presenting antigens, and activating adaptive T cells. However, macrophages are intrinsically incapable of delivering targeted cancer immunotherapies. Engineered adoptive cell therapy introduces new targeting and antitumor capabilities by modifying macrophages to enhance the innate immune response of cells and improve clinical efficacy. In this study, we developed engineered macrophage cholesterol-AS1411-M1 (CAM1) for cellular immunotherapy. To target macrophages, cholesterol-AS1411 aptamers were anchored to the surface of M1 macrophages to produce CAM1 without genetic modification or cell damage. CAM1 induced significantly higher apoptosis/mortality than unmodified M1 macrophages in murine breast cancer cells. Anchoring AS1411 on the surface of macrophages provided a novel approach to construct engineered macrophages for tumor immunotherapy.


Asunto(s)
Aptámeros de Nucleótidos , Inmunoterapia Adoptiva , Macrófagos , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Inmunoterapia Adoptiva/métodos , Ratones , Línea Celular Tumoral , Colesterol/metabolismo , Femenino , Apoptosis , Ingeniería Celular/métodos , Membrana Celular/metabolismo , Humanos
11.
Urol Case Rep ; 55: 102772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040154

RESUMEN

Myopericytoma is a rare soft tissue tumor characterized by differentiation into perivascular muscle-like cells or perimuscular cells. This tumor primarily affects adults and is uncommon in children. It is predominantly found in the subcutaneous soft tissues of the distal limbs, and cases originating in the kidney are exceedingly rare. In this report, we present a case of a patient with renal myopericytoma admitted to our hospital. We also summarize the diagnostic and therapeutic features by reviewing relevant domestic and international literature.

12.
Mater Today Bio ; 27: 101138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39027677

RESUMEN

In contrast to conventional therapies that require repeated dosing, gene therapy can treat diseases by correcting defective genes after a single transfection and achieving cascade amplification, and has been widely studied in clinical settings. However, nucleic acid drugs are prone to catabolism and inactivation. A variety of nucleic acid drug vectors have been developed to protect the target gene against nuclease degradation and increase the transformation efficiency and safety of gene therapy. In addition, gene therapy is often combined with chemotherapy, phototherapy, magnetic therapy, ultrasound, and other therapeutic modalities to improve the therapeutic effect. This review systematically introduces ribonucleic acid (RNA) interference technology, antisense oligonucleotides, and clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing. It also introduces the commonly used nucleic acid drug vectors, including viral vectors (adenovirus, retrovirus, etc.), organic vectors (lipids, polymers, etc.), and inorganic vectors (MOFs, carbon nanotubes, mesoporous silica, etc.). Then, we describe the combined gene therapy modalities and the pathways of action and report the recent applications in solid tumors of the combined gene therapy. Finally, the challenges of gene therapy in solid tumor treatment are introduced, and the prospect of application in this field is presented.

13.
J Zhejiang Univ Sci B ; 25(7): 581-593, 2024 Jul 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39011678

RESUMEN

Long non-coding RNAs (lncRNAs) play an indispensable role in the occurrence and development of ovarian cancer (OC). However, the potential involvement of lncRNAs in the progression of OC is largely unknown. To investigate the detailed roles and mechanisms ofRAD51 homolog B-antisense 1 (RAD51B-AS1), a novel lncRNA in OC, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to verify the expression of RAD51B-AS1. Cellular proliferation, metastasis, and apoptosis were detected using the cell counting kit-8 (CCK-8), colony-formation, transwell, and flow cytometry assays. Mouse xenograft models were established for the detection of tumorigenesis. The results revealed that RAD51B-AS1 was significantly upregulated in a highly metastatic human OC cell line and OC tissues. RAD51B-AS1 significantly increased the proliferation and metastasis of OC cells and enhanced their resistance to anoikis. Biogenetics prediction analysis revealed that the only target gene of RAD51B-AS1 was RAD51B. Subsequent gene function experiments revealed that RAD51B exerts the same biological effects as RAD51B-AS1. Rescue experiments demonstrated that the malignant biological behaviors promoted by RAD51B-AS1 overexpression were partially or completely reversed by RAD51B silencing in vitro and in vivo. Thus, RAD51B-AS1 promotes the malignant biological behaviors of OC and activates the protein kinase B (Akt)/B cell lymphoma protein-2 (Bcl-2) signaling pathway, and these effects may be associated with the positive regulation of RAD51B expression. RAD51B-AS1 is expected to serve as a novel molecular biomarker for the diagnosis and prediction of poor prognosis in OC, and as a potential therapeutic target for disease management.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , ARN Largo no Codificante , Regulación hacia Arriba , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Apoptosis , Ratones Desnudos , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Asian J Surg ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39069411
15.
Res Sq ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39070651

RESUMEN

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.

16.
Mol Carcinog ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078281

RESUMEN

Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.

17.
BMC Med Imaging ; 24(1): 166, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970025

RESUMEN

OBJECTIVE: Accurate delineation of the hippocampal region via magnetic resonance imaging (MRI) is crucial for the prevention and early diagnosis of neurosystemic diseases. Determining how to accurately and quickly delineate the hippocampus from MRI results has become a serious issue. In this study, a pixel-level semantic segmentation method using 3D-UNet is proposed to realize the automatic segmentation of the brain hippocampus from MRI results. METHODS: Two hundred three-dimensional T1-weighted (3D-T1) nongadolinium contrast-enhanced magnetic resonance (MR) images were acquired at Hangzhou Cancer Hospital from June 2020 to December 2022. These samples were divided into two groups, containing 175 and 25 samples. In the first group, 145 cases were used to train the hippocampus segmentation model, and the remaining 30 cases were used to fine-tune the hyperparameters of the model. Images for twenty-five patients in the second group were used as the test set to evaluate the performance of the model. The training set of images was processed via rotation, scaling, grey value augmentation and transformation with a smooth dense deformation field for both image data and ground truth labels. A filling technique was introduced into the segmentation network to establish the hippocampus segmentation model. In addition, the performance of models established with the original network, such as VNet, SegResNet, UNetR and 3D-UNet, was compared with that of models constructed by combining the filling technique with the original segmentation network. RESULTS: The results showed that the performance of the segmentation model improved after the filling technique was introduced. Specifically, when the filling technique was introduced into VNet, SegResNet, 3D-UNet and UNetR, the segmentation performance of the models trained with an input image size of 48 × 48 × 48 improved. Among them, the 3D-UNet-based model with the filling technique achieved the best performance, with a Dice score (Dice score) of 0.7989 ± 0.0398 and a mean intersection over union (mIoU) of 0.6669 ± 0.0540, which were greater than those of the original 3D-UNet-based model. In addition, the oversegmentation ratio (OSR), average surface distance (ASD) and Hausdorff distance (HD) were 0.0666 ± 0.0351, 0.5733 ± 0.1018 and 5.1235 ± 1.4397, respectively, which were better than those of the other models. In addition, when the size of the input image was set to 48 × 48 × 48, 64 × 64 × 64 and 96 × 96 × 96, the model performance gradually improved, and the Dice scores of the proposed model reached 0.7989 ± 0.0398, 0.8371 ± 0.0254 and 0.8674 ± 0.0257, respectively. In addition, the mIoUs reached 0.6669 ± 0.0540, 0.7207 ± 0.0370 and 0.7668 ± 0.0392, respectively. CONCLUSION: The proposed hippocampus segmentation model constructed by introducing the filling technique into a segmentation network performed better than models built solely on the original network and can improve the efficiency of diagnostic analysis.


Asunto(s)
Hipocampo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Femenino
18.
19.
Artículo en Inglés | MEDLINE | ID: mdl-39021178

RESUMEN

AIMS: This study aimed to confirm the regulatory role and mechanism of circular RNA (circRNA) hsa_circ_0131922 in Papillary Thyroid Carcinoma (PTC) progression. BACKGROUND: Accumulating evidence suggests that N6-methyladenosine (m6A)-modified circular RNAs (circRNAs) perform pivotal functions in various malignancies. However, the specific role of the m6A modification of circRNA mediated by METTL3 in Papillary Thyroid Carcinoma (PTC) remains undocumented. OBJECTIVE: In this work, we aimed to examine the molecular mechanisms of a novel m6Amodified circRNA, hsa_circ_0131922, in PTC progression. METHODS: Potential circRNA was identified from GEO datasets. The RNA or protein levels of hsa_circ_0131922, METTL3, p53, and p21 were evaluated by qRT-PCR or western blot assays. The various cellular functions were checked by CCK8, wound healing, transwell, and xenograft tumor assays. MeRIP-qPCR was performed to observe the METTL3-mediated m6A modification of hsa_circ_0131922. Furthermore, the interactions between hsa_circ_0131922 and METTL3 in PTC were analyzed by bioinformatics analysis and various rescue experiments. RESULTS: The levels of hsa_circ_0131922 were markedly downregulated in PTC tissues and cell lines. In addition, the lower hsa_circ_0131922 levels correlated with poor prognosis in PTC patients. The hsa_circ_0131922 overexpression reduced the malignant phenotypes of PTC cells and activated the p53/p21 pathway. Bioinformatic analysis showed the m6A-modified sites of hsa_circ_0131922, and a positive correlation between hsa_circ_0131922 and METTL3. Moreover, overexpression of METTL3 increased the levels of m6A modification of hsa_circ_0131922. Mechanistically, the anti-tumor effects of hsa_circ_0131922 overexpression have been found to be partially reversed by silencing METTL3 in vivo and in vitro. CONCLUSION: The results have demonstrated m6A-modified hsa_circ_0131922 by METTL3 to attenuate the progression of PTC by regulating the p53 pathway. Therefore, hsa_circ_0131922 could be a predictive prognostic biomarker and therapeutic target for PTC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA