Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Clin Invest ; 134(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690739
4.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473360

RESUMEN

The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has been shown to interact with the cAMP response element (CRE) site present in many cis-elements of downstream target genes. JDP2 has also demonstrates important roles in cell-cycle regulation, cancer development and progression, inhibition of adipocyte differentiation, and the regulation of antibacterial immunity and bone homeostasis. JDP2 and ATF3 exhibit significant similarity in their C-terminal domains, sharing 60-65% identities. Previous studies have demonstrated that ATF3 is able to influence both the transcriptional activity and p53 stability via a p53-ATF3 interaction. While some studies have shown that JDP2 suppresses p53 transcriptional activity and in turn, p53 represses JDP2 promoter activity, the direct interaction between JDP2 and p53 and the regulatory role of JDP2 in p53 transactivation have not been explored. In the current study, we provide evidence, for the first time, that JDP2 interacts with p53 and regulates p53 transactivation. First, we demonstrated that JDP2 binds to p53 and the C-terminal domain of JDP2 is crucial for the interaction. Second, in p53-null H1299 cells, JDP2 shows a robust increase of p53 transactivation in the presence of p53 using p53 (14X)RE-Luc. Furthermore, JDP2 and ATF3 together additively enhance p53 transactivation in the presence of p53. While JDP2 can increase p53 transactivation in the presence of WT p53, JDP2 fails to enhance transactivation of hotspot mutant p53. Moreover, in CHX chase experiments, we showed that JDP2 slightly enhances p53 stability. Finally, our findings indicate that JDP2 has the ability to reverse MDM2-induced p53 repression, likely due to decreased levels of MDM2 by JDP2. In summary, our results provide evidence that JDP2 directly interacts with p53 and decreases MDM2 levels to enhance p53 transactivation, suggesting that JDP2 is a novel regulator of p53 and MDM2.

5.
World J Gastroenterol ; 29(20): 3145-3156, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37346148

RESUMEN

BACKGROUND: Cancer detection is a global research focus, and novel, rapid, and label-free techniques are being developed for routine clinical practice. This has led to the development of new tools and techniques from the bench side to routine clinical practice. In this study, we present a method that uses Raman spectroscopy (RS) to detect cancer in unstained formalin-fixed, resected specimens of the esophagus and stomach. Our method can record a clear Raman-scattered light spectrum in these specimens, confirming that the Raman-scattered light spectrum changes because of the histological differences in the mucosal tissue. AIM: To evaluate the use of Raman-scattered light spectrum for detecting endoscop-ically resected specimens of esophageal squamous cell carcinoma (SCC) and gastric adenocarcinoma (AC). METHODS: We created a Raman device that is suitable for observing living tissues, and attempted to acquire Raman-scattered light spectra in endoscopically resected specimens of six esophageal tissues and 12 gastric tissues. We evaluated formalin-fixed tissues using this technique and captured shifts at multiple locations based on feasibility, ranging from six to 19 locations 200 microns apart in the vertical and horizontal directions. Furthermore, a correlation between the obtained Raman scattered light spectra and histopathological diagnosis was performed. RESULTS: We successfully obtained Raman scattered light spectra from all six esophageal and 12 gastric specimens. After data capture, the tissue specimens were sent for histopathological analysis for further processing because RS is a label-free methodology that does not cause tissue destruction or alterations. Based on data analysis of molecular-level substrates, we established cut-off values for the diagnosis of esophageal SCC and gastric AC. By analyzing specific Raman shifts, we developed an algorithm to identify the range of esophageal SCC and gastric AC with an accuracy close to that of histopathological diagnoses. CONCLUSION: Our technique provides qualitative information for real-time morphological diagnosis. However, further in vivo evaluations require an excitation light source with low human toxicity and large amounts of data for validation.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/cirugía , Espectrometría Raman/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/cirugía , Adenocarcinoma/patología , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/cirugía , Formaldehído
6.
Curr Oncol ; 30(2): 1614-1625, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36826085

RESUMEN

The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ARN Mensajero/genética
7.
Behav Brain Res ; 418: 113665, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34767903

RESUMEN

INTRODUCTION: Western diets, including those consisting of saturated fats, simple sugars and processed foods, is rising at an unprecedented rate. These lead to obesity and metabolic diseases, and possibly cognitive deficits. Exploring this, recent studies demonstrate marked impairment in spatial learning in rodents exposed to high-sugar diets. We utilised advanced touchscreen technology to assess several spatial and non-spatial components of cognition in rats chronically exposed to a high sucrose diet. METHODS: Male Wistar rats received 70 ml of 10% sucrose solution each day, or control tap water, persisting for the experiment duration (total n = 32). After 5 weeks of diet, rats performed Pairwise Discrimination, Location Discrimination, or Progressive Ratio tasks on automated touchscreens, and performance compared between groups. RESULTS: Sucrose rats consumed all the sugar solution provided to them, and had significantly increased caloric intake, compared to controls (p < 0.0001). However, in all tests, we found no significant difference in cognitive performance between Sucrose and Control treated rats. This included the number of trials for acquisition, and reversal, in Pairwise Discrimination, and number of trials required to complete Location Discrimination (p > 0.05 for all outcomes). No differences were observed in perseverative behaviour, motivation levels, or processing speed. CONCLUSION: Our study found no evidence to suggest that chronic consumption of sucrose impairs cognition, including both spatial and non-spatial learning tasks. These findings suggest that not all aspects of spatial cognition are negatively impacted by high sugar diet in rodents, and that particular use of touchscreen technology may probe different aspects of cognition than traditional tasks.


Asunto(s)
Cognición/fisiología , Dieta , Sacarosa en la Dieta/administración & dosificación , Ingestión de Energía/fisiología , Aprendizaje Espacial/fisiología , Tecnología , Animales , Masculino , Ratas , Ratas Wistar , Memoria Espacial
8.
Mol Cancer Ther ; 21(2): 245-256, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911817

RESUMEN

Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.


Asunto(s)
Ataxia Telangiectasia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768829

RESUMEN

Activating transcription factor 3 (ATF3), a transcription factor and acute stress sensor, is rapidly induced by a variety of pathophysiological signals and is essential in the complex processes in cellular stress response. FOXP3, a well-known breast and prostate tumor suppressor from the X chromosome, is a novel transcriptional repressor for several oncogenes. However, it remains unknown whether ATF3 is the target protein of FOXP3. Herein, we demonstrate that ATF3 expression is regulated by FOXP3. Firstly, we observed that overexpression of FOXP3 reduced ATF3 protein level. Moreover, knockdown FOXP3 by siRNA increased ATF3 expression. Secondly, FOXP3 dose-dependently reduced ATF3 promoter activity in the luciferase reporter assay. Since FOXP3 is regulated by post-translational modifications (PTMs), we next investigated whether PTMs affect FOXP3-mediated ATF3 expression. Interestingly, we observed that phosphorylation mutation on FOXP3 (Y342F) significantly abolished FOXP3-mediated ATF3 expression. However, other PTM mutations on FOXP3, including S418 phosphorylation, K263 acetylation and ubiquitination, and K268 acetylation and ubiquitination, did not alter FOXP3-mediated ATF3 expression. Finally, the FOXP3 binding site was found on ATF3 promoter region by deletion and mutagenesis analysis. Taken together, our results suggest that FOXP3 functions as a novel regulator of ATF3 and that this novel event may be involved in tumor development and progression.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Factores de Transcripción Forkhead/metabolismo , Activación Transcripcional , Acetilación , Factor de Transcripción Activador 3/genética , Sitios de Unión , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Expresión Génica , Humanos , Mutación , Fosforilación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional
10.
Cancer Cell ; 39(11): 1497-1518.e11, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34715028

RESUMEN

ADAPTeR is a prospective, phase II study of nivolumab (anti-PD-1) in 15 treatment-naive patients (115 multiregion tumor samples) with metastatic clear cell renal cell carcinoma (ccRCC) aiming to understand the mechanism underpinning therapeutic response. Genomic analyses show no correlation between tumor molecular features and response, whereas ccRCC-specific human endogenous retrovirus expression indirectly correlates with clinical response. T cell receptor (TCR) analysis reveals a significantly higher number of expanded TCR clones pre-treatment in responders suggesting pre-existing immunity. Maintenance of highly similar clusters of TCRs post-treatment predict response, suggesting ongoing antigen engagement and survival of families of T cells likely recognizing the same antigens. In responders, nivolumab-bound CD8+ T cells are expanded and express GZMK/B. Our data suggest nivolumab drives both maintenance and replacement of previously expanded T cell clones, but only maintenance correlates with response. We hypothesize that maintenance and boosting of a pre-existing response is a key element of anti-PD-1 mode of action.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias Renales/tratamiento farmacológico , Nivolumab/administración & dosificación , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD8-positivos , Carcinoma de Células Renales/genética , Ensayos Clínicos Fase II como Asunto , Retrovirus Endógenos/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Renales/genética , Nivolumab/farmacología , Estudios Prospectivos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Escape del Tumor , Microambiente Tumoral , Secuenciación del Exoma
11.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622804

RESUMEN

Tregs play vital roles in suppressing atherogenesis. Pathological conditions reshape Tregs and increase Treg-weakening plasticity. It remains unclear how Tregs preserve their function and how Tregs switch into alternative phenotypes in the environment of atherosclerosis. In this study, we observed a great induction of CD4+Foxp3+ Tregs in the spleen and aorta of ApoE-/- mice, accompanied by a significant increase of plasma IL-35 levels. To determine if IL-35 devotes its role in the rise of Tregs, we generated IL-35 subunit P35-deficient (IL-35P35-deficient) mice on an ApoE-/- background and found Treg reduction in the spleen and aorta compared with ApoE-/- controls. In addition, our RNA sequencing data show the elevation of a set of chemokine receptor transcripts in the ApoE-/- Tregs, and we have validated higher CCR5 expression in ApoE-/- Tregs in the presence of IL-35 than in the absence of IL-35. Furthermore, we observed that CCR5+ Tregs in ApoE-/- have lower Treg-weakening AKT-mTOR signaling, higher expression of inhibitory checkpoint receptors TIGIT and PD-1, and higher expression of IL-10 compared with WT CCR5+ Tregs. In conclusion, IL-35 counteracts hyperlipidemia in maintaining Treg-suppressive function by increasing 3 CCR5-amplified mechanisms, including Treg migration, inhibition of Treg weakening AKT-mTOR signaling, and promotion of TIGIT and PD-1 signaling.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Interleucinas/genética , Bazo/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Aterosclerosis/metabolismo , Linfocitos T CD4-Positivos , Movimiento Celular , Factores de Transcripción Forkhead , Interleucina-10/genética , Interleucinas/metabolismo , Ratones , Ratones Noqueados , Ratones Noqueados para ApoE , Receptor de Muerte Celular Programada 1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CCR5/genética , Receptores Inmunológicos/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
12.
Front Cardiovasc Med ; 8: 713170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368262

RESUMEN

To examine whether the expressions of 260 organelle crosstalk regulators (OCRGs) in 16 functional groups are modulated in 23 diseases and 28 tumors, we performed extensive -omics data mining analyses and made a set of significant findings: (1) the ratios of upregulated vs. downregulated OCRGs are 1:2.8 in acute inflammations, 1:1 in metabolic diseases, 1:1.2 in autoimmune diseases, and 1:3.8 in organ failures; (2) sepsis and trauma-upregulated OCRG groups such as vesicle, mitochondrial (MT) fission, and mitophagy but not others, are termed as the cell crisis-handling OCRGs. Similarly, sepsis and trauma plus organ failures upregulated seven OCRG groups including vesicle, MT fission, mitophagy, sarcoplasmic reticulum-MT, MT fusion, autophagosome-lysosome fusion, and autophagosome/endosome-lysosome fusion, classified as the cell failure-handling OCRGs; (3) suppression of autophagosome-lysosome fusion in endothelial and epithelial cells is required for viral replications, which classify this decreased group as the viral replication-suppressed OCRGs; (4) pro-atherogenic damage-associated molecular patterns (DAMPs) such as oxidized low-density lipoprotein (oxLDL), lipopolysaccharide (LPS), oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), and interferons (IFNs) totally upregulated 33 OCRGs in endothelial cells (ECs) including vesicle, MT fission, mitophagy, MT fusion, endoplasmic reticulum (ER)-MT contact, ER- plasma membrane (PM) junction, autophagosome/endosome-lysosome fusion, sarcoplasmic reticulum-MT, autophagosome-endosome/lysosome fusion, and ER-Golgi complex (GC) interaction as the 10 EC-activation/inflammation-promoting OCRG groups; (5) the expression of OCRGs is upregulated more than downregulated in regulatory T cells (Tregs) from the lymph nodes, spleen, peripheral blood, intestine, and brown adipose tissue in comparison with that of CD4+CD25- T effector controls; (6) toll-like receptors (TLRs), reactive oxygen species (ROS) regulator nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammasome-activated regulator caspase-1 regulated the expressions of OCRGs in diseases, virus-infected cells, and pro-atherogenic DAMP-treated ECs; (7) OCRG expressions are significantly modulated in all the 28 cancer datasets, and the upregulated OCRGs are correlated with tumor immune infiltrates in some tumors; (8) tumor promoter factor IKK2 and tumor suppressor Tp53 significantly modulate the expressions of OCRGs. Our findings provide novel insights on the roles of upregulated OCRGs in the pathogenesis of inflammatory diseases and cancers, and novel pathways for the future therapeutic interventions for inflammations, sepsis, trauma, organ failures, autoimmune diseases, metabolic cardiovascular diseases (CVDs), and cancers.

13.
Cancer Res ; 81(14): 3876-3889, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33975880

RESUMEN

Breast cancer diagnosed within 10 years following childbirth is defined as postpartum breast cancer (PPBC) and is highly metastatic. Interactions between immune cells and other stromal cells within the involuting mammary gland are fundamental in facilitating an aggressive tumor phenotype. The MNK1/2-eIF4E axis promotes translation of prometastatic mRNAs in tumor cells, but its role in modulating the function of nontumor cells in the PPBC microenvironment has not been explored. Here, we used a combination of in vivo PPBC models and in vitro assays to study the effects of inactivation of the MNK1/2-eIF4E axis on the protumor function of select cells of the tumor microenvironment. PPBC mice deficient for phospho-eIF4E (eIF4ES209A) were protected against lung metastasis and exhibited differences in the tumor and lung immune microenvironment compared with wild-type mice. Moreover, the expression of fibroblast-derived IL33, an alarmin known to induce invasion, was repressed upon MNK1/2-eIF4E axis inhibition. Imaging mass cytometry on PPBC and non-PPBC patient samples indicated that human PPBC contains phospho-eIF4E high-expressing tumor cells and CD8+ T cells displaying markers of an activated dysfunctional phenotype. Finally, inhibition of MNK1/2 combined with anti-PD-1 therapy blocked lung metastasis of PPBC. These findings implicate the involvement of the MNK1/2-eIF4E axis during PPBC metastasis and suggest a promising immunomodulatory route to enhance the efficacy of immunotherapy by blocking phospho-eIF4E. SIGNIFICANCE: This study investigates the MNK1/2-eIF4E signaling axis in tumor and stromal cells in metastatic breast cancer and reveals that MNK1/2 inhibition suppresses metastasis and sensitizes tumors to anti-PD-1 immunotherapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Factor 4E Eucariótico de Iniciación/uso terapéutico , Terapia de Inmunosupresión/métodos , Animales , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/farmacología , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Periodo Posparto
14.
J Cardiovasc Transl Res ; 14(5): 951-961, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33999374

RESUMEN

Increasing evidence suggests that digital health interventions (DHIs) are an effective tool to reduce hospital readmissions by improving adherence to guideline-directed therapy. We investigated whether sociodemographic characteristics influence use of a DHI targeting 30-day readmission reduction after acute myocardial infarction (AMI). Covariates included age, sex, race, native versus loaner iPhone, access to a Bluetooth-enabled blood pressure monitor, and disease severity as marked by treatment with CABG. Age, sex, and race were not significantly associated with DHI use before or after covariate adjustment (fully adjusted OR 0.98 (95%CI: 0.95-1.01), 0.6 (95%CI: 0.29-1.25), and 1.22 (95% CI: 0.60-2.48), respectively). Being married was associated with high DHI use (OR 2.12; 95% CI 1.02-4.39). Our findings suggest that DHIs may have a role in achieving equity in cardiovascular health given similar use by age, sex, and race. The presence of a spouse, perhaps a proxy for enhanced caregiver support, may encourage DHI use.


Asunto(s)
Presión Sanguínea , Infarto del Miocardio/terapia , Aceptación de la Atención de Salud , Autocuidado , Telemedicina , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Actitud hacia los Computadores , Monitoreo Ambulatorio de la Presión Arterial/instrumentación , Puente de Arteria Coronaria , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino , Estado Civil , Cumplimiento de la Medicación , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/epidemiología , Readmisión del Paciente , Estudios Prospectivos , Factores Raciales , Prevención Secundaria , Autocuidado/instrumentación , Factores Sexuales , Teléfono Inteligente , Telemedicina/instrumentación , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos
15.
Front Immunol ; 12: 649458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815408

RESUMEN

A distinct B cell population marked by elevated CD11c expression is found in patients with systemic lupus erythematosus (SLE). Cells with a similar phenotype have been described during chronic infection, but variable gating strategies and nomenclature have led to uncertainty of their relationship to each other. We isolated CD11chi cells from peripheral blood and characterized them using transcriptome and IgH repertoire analyses. Gene expression data revealed the CD11chi IgD+ and IgD- subsets were highly similar to each other, but distinct from naive, memory, and plasma cell subsets. Although CD11chi B cells were enriched in some germinal center (GC) transcripts and expressed numerous negative regulators of B cell receptor (BCR) activation, they were distinct from GC B cells. Gene expression patterns from SLE CD11chi B cells were shared with other human diseases, but not with mouse age-associated B cells. IgH V-gene sequencing analysis showed IgD+ and IgD- CD11chi B cells had somatic hypermutation and were clonally related to each other and to conventional memory and plasma cells. However, the IgH repertoires expressed by the different subsets suggested that defects in negative selection during GC transit could contribute to autoimmunity. The results portray a pervasive B cell population that accumulates during autoimmunity and chronic infection and is refractory to BCR signaling.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Infecciones/inmunología , Lupus Eritematoso Sistémico/inmunología , Adulto , Anciano , Animales , Subgrupos de Linfocitos B/metabolismo , Antígeno CD11c/metabolismo , Biología Computacional , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Centro Germinal/citología , Humanos , Cadenas Pesadas de Inmunoglobulina/metabolismo , Infecciones/sangre , Lupus Eritematoso Sistémico/sangre , Ratones , Persona de Mediana Edad
16.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33690225

RESUMEN

Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Factor 4E Eucariótico de Iniciación/inmunología , Inmunidad Celular , Sistema de Señalización de MAP Quinasas/inmunología , Melanoma Experimental/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Factor 4E Eucariótico de Iniciación/genética , Inmunoterapia , Sistema de Señalización de MAP Quinasas/genética , Melanoma Experimental/genética , Melanoma Experimental/terapia , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Proteínas Serina-Treonina Quinasas/genética , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/inmunología
17.
Mol Cancer Ther ; 20(5): 775-786, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649105

RESUMEN

The development of antimetastatic drugs is an urgent healthcare priority for patients with cancer, because metastasis is thought to account for around 90% of cancer deaths. Current antimetastatic treatment options are limited and often associated with poor long-term survival and systemic toxicities. Bcl3, a facilitator protein of the NF-κB family, is associated with poor prognosis in a range of tumor types. Bcl3 has been directly implicated in the metastasis of tumor cells, yet is well tolerated when constitutively deleted in murine models, making it a promising therapeutic target. Here, we describe the identification and characterization of the first small-molecule Bcl3 inhibitor, by using a virtual drug design and screening approach against a computational model of the Bcl3-NF-kB1(p50) protein-protein interaction. From selected virtual screening hits, one compound (JS6) showed potent intracellular Bcl3-inhibitory activity. JS6 treatment led to reductions in Bcl3-NF-kB1 binding, tumor colony formation, and cancer cell migration in vitro; and tumor stasis and antimetastatic activity in vivo, while being devoid of overt systemic toxicity. These results represent a successful application of in silico screening in the identification of protein-protein inhibitors for novel intracellular targets, and confirm Bcl3 as a potential antimetastatic target.


Asunto(s)
Proteínas del Linfoma 3 de Células B/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Modelos Moleculares
18.
J Med Internet Res ; 23(2): e18773, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33555259

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death worldwide. Despite strong evidence supporting the benefits of cardiac rehabilitation (CR), over 80% of eligible patients do not participate in CR. Digital health technologies (ie, the delivery of care using the internet, wearable devices, and mobile apps) have the potential to address the challenges associated with traditional facility-based CR programs, but little is known about the comprehensiveness of these interventions to serve as digital approaches to CR. Overall, there is a lack of a systematic evaluation of the current literature on digital interventions for CR. OBJECTIVE: The objective of this systematic literature review is to provide an in-depth analysis of the potential of digital health technologies to address the challenges associated with traditional CR. Through this review, we aim to summarize the current literature on digital interventions for CR, identify the key components of CR that have been successfully addressed through digital interventions, and describe the gaps in research that need to be addressed for sustainable and scalable digital CR interventions. METHODS: Our strategy for identifying the primary literature pertaining to CR with digital solutions (defined as technology employed to deliver remote care beyond the use of the telephone) included a consultation with an expert in the field of digital CR and searches of the PubMed (MEDLINE), Embase, CINAHL, and Cochrane databases for original studies published from January 1990 to October 2018. RESULTS: Our search returned 31 eligible studies, of which 22 were randomized controlled trials. The reviewed CR interventions primarily targeted physical activity counseling (31/31, 100%), baseline assessment (30/31, 97%), and exercise training (27/31, 87%). The most commonly used modalities were smartphones or mobile devices (20/31, 65%), web-based portals (18/31, 58%), and email-SMS (11/31, 35%). Approximately one-third of the studies addressed the CR core components of nutrition counseling, psychological management, and weight management. In contrast, less than a third of the studies addressed other CR core components, including the management of lipids, diabetes, smoking cessation, and blood pressure. CONCLUSIONS: Digital technologies have the potential to increase access and participation in CR by mitigating the challenges associated with traditional, facility-based CR. However, previously evaluated interventions primarily focused on physical activity counseling and exercise training. Thus, further research is required with more comprehensive CR interventions and long-term follow-up to understand the clinical impact of digital interventions.


Asunto(s)
Rehabilitación Cardiaca/métodos , Aplicaciones Móviles/normas , Telemedicina/métodos , Humanos
19.
World J Gastrointest Oncol ; 12(11): 1311-1324, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33250963

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is an important disease worldwide, accounting for the second highest number of cancer-related deaths and the third highest number of new cancer cases. The blood test is a simple and minimally invasive diagnostic test. However, there is currently no blood test that can accurately diagnose CRC. AIM: To develop a comprehensive, spontaneous, minimally invasive, label-free, blood-based CRC screening technique based on Raman spectroscopy. METHODS: We used Raman spectra recorded using 184 serum samples obtained from patients undergoing colonoscopies. Patients with malignant tumor histories as well as those with cancers in organs other than the large intestine were excluded. Consequently, the specific diseases of 184 patients were CRC (12), rectal neuroendocrine tumor (2), colorectal adenoma (68), colorectal hyperplastic polyp (18), and others (84). We used the 1064-nm wavelength laser for excitation. The power of the laser was set to 200 mW. RESULTS: Use of the recorded Raman spectra as training data allowed the construction of a boosted tree CRC prediction model based on machine learning. Therefore, the generalized R 2 values for CRC, adenomas, hyperplastic polyps, and neuroendocrine tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively. CONCLUSION: For machine learning using Raman spectral data, a highly accurate CRC prediction model with a high R 2 value was constructed. We are currently planning studies to demonstrate the accuracy of this model with a large amount of additional data.

20.
Redox Biol ; 37: 101696, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32950427

RESUMEN

Reactive oxygen species (ROS) are critical for the progression of cardiovascular diseases, inflammations and tumors. However, the mechanisms of how ROS sense metabolic stress, regulate metabolic pathways and initiate proliferation, inflammation and cell death responses remain poorly characterized. In this analytic review, we concluded that: 1) Based on different features and functions, eleven types of ROS can be classified into seven functional groups: metabolic stress-sensing, chemical connecting, organelle communication, stress branch-out, inflammasome-activating, dual functions and triple functions ROS. 2) Among the ROS generation systems, mitochondria consume the most amount of oxygen; and nine types of ROS are generated; thus, mitochondrial ROS systems serve as the central hub for connecting ROS with inflammasome activation, trained immunity and immunometabolic pathways. 3) Increased nuclear ROS production significantly promotes cell death in comparison to that in other organelles. Nuclear ROS systems serve as a convergent hub and decision-makers to connect unbearable and alarming metabolic stresses to inflammation and cell death. 4) Balanced ROS levels indicate physiological homeostasis of various metabolic processes in subcellular organelles and cytosol, while imbalanced ROS levels present alarms for pathological organelle stresses in metabolic processes. Based on these analyses, we propose a working model that ROS systems are a new integrated network for sensing homeostasis and alarming stress in metabolic processes in various subcellular organelles. Our model provides novel insights on the roles of the ROS systems in bridging metabolic stress to inflammation, cell death and tumorigenesis; and provide novel therapeutic targets for treating those diseases. (Word count: 246).


Asunto(s)
Mitocondrias , Transducción de Señal , Núcleo Celular/metabolismo , Homeostasis , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA