Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Mater ; 36(24): e2311103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489817

RESUMEN

ß-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of ß-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent ß-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated ß3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated ß3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated ß3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.


Asunto(s)
Simulación de Dinámica Molecular , Nanoestructuras , Péptidos , Nanoestructuras/química , Péptidos/química , Lípidos/química , Microscopía de Fuerza Atómica
2.
ACS Nano ; 16(12): 20129-20140, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300936

RESUMEN

Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Péptidos , Oro/química , Aminas , Concentración de Iones de Hidrógeno
3.
Small ; 18(27): e2201993, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670200

RESUMEN

Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Pez Cebra , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos , Oxazoles
4.
ACS Nano ; 16(1): 98-110, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34843208

RESUMEN

Metal-phenolic networks (MPNs) are amorphous materials that can be used to engineer functional films and particles. A fundamental understanding of the heat-driven structural reorganization of MPNs can offer opportunities to rationally tune their properties (e.g., size, permeability, wettability, hydrophobicity) for applications such as drug delivery, sensing, and tissue engineering. Herein, we use a combination of single-molecule localization microscopy, theoretical electronic structure calculations, and all-atom molecular dynamics simulations to demonstrate that MPN plasticity is governed by both the inherent flexibility of the metal (FeIII)-phenolic coordination center and the conformational elasticity of the phenolic building blocks (tannic acid, TA) that make up the metal-organic coordination complex. Thermal treatment (heating to 150 °C) of the flexible TA/FeIII networks induces a considerable increase in the number of aromatic π-π interactions formed among TA moieties and leads to the formation of hydrophobic domains. In the case of MPN capsules, 15 min of heating induces structural rearrangements that cause the capsules to shrink (from ∼4 to ∼3 µm), resulting in a thicker (3-fold), less porous, and higher protein (e.g., bovine serum albumin) affinity MPN shell. In contrast, when a simple polyphenol such as gallic acid is complexed with FeIII to form MPNs, rigid materials that are insensitive to temperature changes are obtained, and negligible structural rearrangement is observed upon heating. These findings are expected to facilitate the rational engineering of versatile TA-based MPN materials with tunable physiochemical properties for diverse applications.


Asunto(s)
Complejos de Coordinación , Compuestos Férricos , Cápsulas/química , Compuestos Férricos/química , Microscopía , Fenoles , Metales/química , Complejos de Coordinación/química , Elasticidad
5.
Angew Chem Int Ed Engl ; 60(37): 20225-20230, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34258845

RESUMEN

Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (π-π) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 °C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via π interactions without requiring elaborate synthetic processes.


Asunto(s)
Colorantes Fluorescentes/química , Imidazoles/química , Estructuras Metalorgánicas/química , Rodaminas/química , Compuestos de Sulfhidrilo/química , Taninos/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Concentración Osmolar , Temperatura
6.
ACS Nano ; 15(3): 4034-4044, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33587607

RESUMEN

The evolution of life on earth eventually leads to the emergence of species with increased complexity and diversity. Similarly, evolutionary chemical space exploration in the laboratory is a key step to pursue the structural and functional diversity of supramolecular systems. Here, we present a powerful tool that enables rapid peptide diversification and employ it to expand the chemical space for supramolecular functions. Central to this strategy is the exploitation of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions to direct combinatorial synthesis of peptide arrays in microtiter plates under an open atmosphere. Taking advantage of this in situ library design, our results unambiguously deliver a fertile platform for creating a set of intriguing peptide functions including green fluorescent protein-like peptide emitters with chemically encoded emission colors, hierarchical self-assembly into nano-objects, and macroscopic hydrogels. This work also offers opportunities for quickly surveying the diversified peptide arrays and thereby identifying the structural factors that modulate peptide properties.


Asunto(s)
Paladio , Péptidos , Hidrogeles
7.
Nat Commun ; 11(1): 4804, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968077

RESUMEN

We report a facile strategy for engineering diverse particles based on the supramolecular assembly of natural polyphenols and a self-polymerizable aromatic dithiol. In aqueous conditions, uniform and size-tunable supramolecular particles are assembled through π-π interactions as mediated by polyphenols. Owing to the high binding affinity of phenolic motifs present at the surface, these particles allow for the subsequent deposition of various materials (i.e., organic, inorganic, and hybrid components), producing a variety of monodisperse functional particles. Moreover, the solvent-dependent disassembly of the supramolecular networks enables their removal, generating a wide range of corresponding hollow structures including capsules and yolk-shell structures. The versatility of these supramolecular networks, combined with their negligible cytotoxicity provides a pathway for the rational design of a range of particle systems (including core-shell, hollow, and yolk-shell) with potential in biomedical and environmental applications.

8.
Nanoscale ; 11(4): 1921-1928, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644497

RESUMEN

Metal-phenolic networks (MPNs) have received widespread interest owing to their modular incorporation of functional metal ions and phenolic ligands. However, the interaction between MPNs and biomolecules is still relatively unexplored. Herein, we studied the effects of MPN-coated gold nanoparticles on amyloid fibril formation (which is associated with Alzheimer's disease) as a function of the metal ion in the MPN systems. All coated particles examined inhibited amyloid formation, with cobalt(ii) MPN-coated particles exhibiting the highest inhibition activity (90%). Molecular dynamics simulations and quantum mechanics calculations suggested that the geometry of the exposed cobalt coordination site in the cobalt-tannic acid networks facilitates its interactions with histidine and methionine residues in the amyloid beta peptides. Furthermore, the unique structure of cobalt MPNs may enable a wider variety of biomedical applications.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Cobalto/química , Nanoestructuras/química , Taninos/química , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Supervivencia Celular/efectos de los fármacos , Oro/química , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Nanoestructuras/toxicidad , Células PC12 , Teoría Cuántica , Ratas
9.
ACS Nano ; 13(2): 1900-1909, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30673202

RESUMEN

Understanding the self-organization and structural transformations of molecular ensembles is important to explore the complexity of biological systems. Here, we illustrate the crucial role of cosolvents and solvation effects in thermodynamic and kinetic control over peptide association into ultrathin Janus nanosheets, elongated nanobelts, and amyloid-like fibrils. We gained further insight into the solvation-directed self-assembly (SDSA) by investigating residue-specific peptide solvation using molecular dynamics modeling. We proposed the preferential solvation of the aromatic and alkyl domains on the peptide backbone and protofibril surface, which results in volume exclusion effects and restricts the peptide association between hydrophobic walls. We explored the SDSA phenomenon in a library of cosolvents (protic and aprotic), where less polar cosolvents were found to exert a stronger influence on the energetic balance at play during peptide propagation. By tailoring cosolvent polarity, we were able to achieve precise control of the peptide nanostructures with 1D/2D shape selection. We also illustrated the complexity of the SDSA system with pathway-dependent peptide aggregation, where two self-assembly states ( i.e., thermodynamic equilibrium state and kinetically trapped state) from different sample preparation methods were obtained.


Asunto(s)
Péptidos/síntesis química , Termodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Péptidos/química , Conformación Proteica , Solubilidad
10.
J Am Chem Soc ; 140(51): 18217-18226, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30557016

RESUMEN

Quantum-sized metallic clusters protected by biological ligands represent a new class of luminescent materials; yet the understanding of structural information and photoluminescence origin of these ultrasmall clusters remains a challenge. Herein we systematically study the surface ligand dynamics and ligand-metal core interactions of peptide-protected gold nanoclusters (AuNCs) with combined experimental characterizations and theoretical molecular simulations. We show that the peptide sequence plays an important role in determining the surface peptide structuring, interfacial water dynamics and ligand-Au core interaction, which can be tailored by controlling peptide acetylation, constituent amino acid electron donating/withdrawing capacity, aromaticity/hydrophobicity and by adjusting environmental pH. Specifically, emission enhancement is achieved through increasing the electron density of surface ligands in proximity to the Au core, discouraging photoinduced quenching, and by reducing the amount of surface-bound water molecules. These findings provide key design principles for understanding the surface dynamics of peptide-protected nanoparticles and maximizing the photoluminescence of metallic clusters through the exploitation of biologically relevant ligand properties.


Asunto(s)
Oro/química , Sustancias Luminiscentes/química , Nanopartículas del Metal/química , Péptidos/química , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Luminiscencia , Microscopía Confocal , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
11.
ACS Nano ; 12(9): 9101-9109, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30157375

RESUMEN

Peptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. ß3-Peptides are non-natural peptides composed entirely of ß-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of ß3-peptides that adopt 14-helical structures. ß3-Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. To develop structure-based criteria for the design of ß3-peptide-based biomaterials with tailored function, we investigated the structure of a tri-ß3-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-ß3[LIA] in water and used to inform and validate the model structure. Models with 3-fold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macroscale fibers derived from ß3-peptide-based materials provide valuable insight into the effects of the geometric placement of the side chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology.


Asunto(s)
Nanofibras/química , Péptidos/química , Materiales Biocompatibles/química , Modelos Moleculares , Tamaño de la Partícula , Conformación Proteica , Propiedades de Superficie
12.
PLoS One ; 12(10): e0186219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023509

RESUMEN

Although several computational modelling studies have investigated the conformational behaviour of inherently disordered protein (IDP) amylin, discrepancies in identifying its preferred solution conformations still exist between various forcefields and sampling methods used. Human islet amyloid polypeptide has long been a subject of research, both experimentally and theoretically, as the aggregation of this protein is believed to be the lead cause of type-II diabetes. In this work, we present a systematic forcefield assessment using one of the most advanced non-biased sampling techniques, Replica Exchange with Solute Tempering (REST2), by comparing the secondary structure preferences of monomeric amylin in solution. This study also aims to determine the ability of common forcefields to sample a transition of the protein from a helical membrane bound conformation into the disordered solution state of amylin. Our results demonstrated that the CHARMM22* forcefield showed the best ability to sample multiple conformational states inherent for amylin. It is revealed that REST2 yielded results qualitatively consistent with experiments and in quantitative agreement with other sampling methods, however far more computationally efficiently and without any bias. Therefore, combining an unbiased sampling technique such as REST2 with a vigorous forcefield testing could be suggested as an important step in developing an efficient and robust strategy for simulating IDPs.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/química , Modelos Moleculares , Simulación por Computador , Humanos , Estructura Terciaria de Proteína
13.
Chem Mater ; 29(4): 1550-1560, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28260837

RESUMEN

A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP-AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and ß-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP-AuNP interactions were initiated by the N-terminal domain (IAPP residues 1-19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption.

14.
Nat Nanotechnol ; 11(12): 1105-1111, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27723730

RESUMEN

The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells. This strategy can be used to access a large number of modularly assembled superstructures, including core-satellite, hollow and hierarchically organized supraparticles. Colloidal-probe atomic force microscopy and molecular dynamics simulations provide detailed insights into the role of surface functionalization and how this facilitates superstructure construction. Our work provides a platform for the rapid generation of superstructured assemblies across a wide range of length scales, from nanometres to centimetres.

15.
Artículo en Inglés | MEDLINE | ID: mdl-27690076

RESUMEN

Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.

16.
J Phys Chem B ; 118(37): 10927-33, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25153318

RESUMEN

The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.


Asunto(s)
Glicoles de Etileno/química , Povidona/química , Agua/química , Aire , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Propiedades de Superficie
17.
Nano Lett ; 14(9): 5229-37, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25157643

RESUMEN

Functionalizing nanoparticles with cell-penetrating peptides is a popular choice for cellular delivery. We investigated the effects of TAT peptide concentration and arrangement in solution on functionalized nanoparticles' efficacy for membrane permeation. We found that cell internalization correlates with the positive charge distribution achieved prior to nanoparticle encountering interactions with membrane. We identified a combination of solution based properties required to maximize the internalization efficacy of TAT-functionalized nanoparticles.


Asunto(s)
Oro/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Péptidos/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Simulación por Computador , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanotecnología/métodos , Temperatura , Agua/química
18.
Angew Chem Int Ed Engl ; 53(2): 459-64, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24536101

RESUMEN

In this study, the stereocomplexation between a novel stereospecific cyclic vinyl polymer, that is, cyclic syndiotactic poly(methyl methacrylate) (st-PMMA), with the complementary linear isotactic (it-) PMMA was investigated. Surprising new insight into the effects of the topology (i.e., end groups), size, and tacticity of the assembling components on stereocomplex formation was obtained. Characterization of the stereocomplexes revealed that the self-assembly of cyclic st-PMMAs and linear it-PMMAs resulted in the formation of an unprecedented "polypseudorotaxane-type" supramolecular assembly. This stereocomplex exhibited remarkably different physical properties as compared to the conventional PMMA triple-helix stereocomplex as a result of the restricted topology imposed by the cyclic st-PMMA assembling component.


Asunto(s)
Azidas/química , Compuestos Policíclicos/química , Polimetil Metacrilato/química , Azidas/síntesis química , Química Clic , Ciclización , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos/síntesis química , Polimetil Metacrilato/síntesis química , Estereoisomerismo
19.
PLoS Comput Biol ; 9(12): e1003360, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339760

RESUMEN

Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth.


Asunto(s)
Amiloide/metabolismo , Carbono/química , Modelos Teóricos , Nanoestructuras , Péptidos/metabolismo , Modelos Moleculares , Péptidos/química , Unión Proteica , Conformación Proteica , Termodinámica
20.
J Phys Chem B ; 117(13): 3603-12, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23472938

RESUMEN

Mixed monolayers of 1-octadecanol (C18OH) and ethylene glycol monooctadecyl ether (C18E1) were studied to assess their evaporation suppressing performance. An unexpected increase in performance and stability was found around the 0.5:0.5 bicomponent mixture and has been ascribed to a synergistic effect of the monolayers. Molecular dynamics simulations have attributed this to an additional hydrogen bonding interaction between the monolayer and water, due to the exposed ether oxygen of C18E1 in the mixed system compared to the same ether oxygen in the pure C18E1 system. This interaction is maximized around the 0.5:0.5 ratio due to the particular interfacial geometry associated with this mixture.


Asunto(s)
Glicol de Etileno/química , Glicoles de Etileno/química , Alcoholes Grasos/química , Simulación de Dinámica Molecular , Aire , Enlace de Hidrógeno , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA