Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 173(8): 2198-210, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24974168

RESUMEN

The shikonin derivatives, accumulated in the roots of Arnebia euchroma (Boraginaceae), showed antibacterial, anti-inflammatory, and anti-tumor activities. To explore their possible biosynthesis regulation mechanism, this paper investigated the effects of exogenous methyl jasmonate (MJ) on the biosynthesis of shikonin derivatives in callus cultures of A. euchroma. The main results include: Under MJ treatment, the growth of A. euchroma callus cultures was not inhibited, but the expression level of both the genes involved in the biosynthesis of shikonin derivatives and their precursors and the genes responsible for intracellular localization of shikonin derivatives increased significantly in the Red Strain (shikonin derivatives high-producing strain). The quantitative analysis showed that six out of the seven naphthoquinone compounds under investigation increased their contents in the MJ-treated Red Strain, and in particular, the bioactive component acetylshikonin nearly doubled its content in the MJ-treated Red Strain. In addition, it was also observed that the metabolic profiling of naphthoquinone compounds changed significantly after MJ treatment, and the MJ-treated and MJ-untreated strains clearly formed distinct clusters in the score plot of PLS-DA. Our results provide some new insights into the regulation mechanism of the biosynthesis of shikonin derivatives and a possible way to increase the production of naphthoquinone compounds in A. euchroma callus cultures in the future.


Asunto(s)
Acetatos/metabolismo , Boraginaceae/metabolismo , Ciclopentanos/metabolismo , Naftoquinonas/metabolismo , Oxilipinas/metabolismo , Boraginaceae/genética , Boraginaceae/crecimiento & desarrollo , Técnicas de Cultivo de Célula , Naftoquinonas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
2.
Planta ; 236(5): 1571-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22837051

RESUMEN

Catharanthus roseus is an important medicinal plant and the sole commercial source of monoterpenoid indole alkaloids (MIA), anticancer compounds. Recently, triterpenoids like ursolic acid and oleanolic acid have also been found in considerable amounts in C. roseus leaf cuticular wax layer. These simple pentacyclic triterpenoids exhibit various pharmacological activities such as anti-inflammatory, anti-tumor and anti-microbial properties. Using the EST collection from C. roseus leaf epidermome ( http://www.ncbi.nlm.nih.gov/dbEST ), we have successfully isolated a cDNA (CrAS) encoding 2,3-oxidosqualene cyclase (OSC) and a cDNA (CrAO) encoding amyrin C-28 oxidase from the leaves of C. roseus. The functions of CrAS and CrAO were analyzed in yeast (Saccharomyces cerevisiae) systems. CrAS was characterized as a novel multifunctional OSC producing α- and ß-amyrin in a ratio of 2.5:1, whereas CrAO was a multifunctional C-28 oxidase converting α-amyrin, ß-amyrin and lupeol to ursolic-, oleanolic- and betulinic acids, respectively, via a successive oxidation at the C-28 position of the substrates. In yeast co-expressing CrAO and CrAS, ursolic- and oleanolic acids were detected in the yeast cell extracts, while the yeast cells co-expressing CrAO and AtLUP1 from Arabidopsis thaliana produced betulinic acid. Both CrAS and CrAO genes show a high expression level in the leaf, which was consistent with the accumulation patterns of ursolic- and oleanolic acids in C. roseus. These results suggest that CrAS and CrAO are involved in the pentacyclic triterpene biosynthesis in C. roseus.


Asunto(s)
Catharanthus/genética , Catharanthus/metabolismo , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Arabidopsis/genética , Vías Biosintéticas/genética , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , ADN Complementario , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Saccharomyces cerevisiae/genética , Ácido Ursólico
3.
Plant Cell Physiol ; 50(12): 2146-61, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19880398

RESUMEN

Amorpha-4,11-diene synthase (ADS) of Artemisia annua catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene, the first committed step in the biosynthesis of the antimalarial drug artemisinin. The promoters of ADS contain two reverse-oriented TTGACC W-box cis-acting elements, which are the proposed binding sites of WRKY transcription factors. A full-length cDNA (AaWRKY1) was isolated from a cDNA library of the glandular secretory trichomes (GSTs) in which artemisinin is synthesized and sequestered. AaWRKY1 encodes a 311 amino acid protein containing a single WRKY domain. AaWRKY1 and ADS genes were highly expressed in GSTs and both were strongly induced by methyl jasmonate and chitosan. Transient expression analysis of the AaWRKY1-GFP (green fluorescent protein) reporter revealed that AaWRKY1 was targeted to nuclei. Biochemical analysis demonstrated that the AaWRKY1 protein was capable of binding to the W-box cis-acting elements of the ADS promoters, and it demonstrated transactivation activity in yeast. Co-expression of the effector construct 35S::AaWRKY1 with a reporter construct ADSpro1::GUS greatly activated expression of the GUS (beta-glucuronidase) gene in stably transformed tobacco. Furthermore, transient expression experiments in agroinfiltrated Nicotiana benthamiana and A. annua leaves showed that AaWRKY1 protein transactivated the ADSpro2 promoter activity by binding to the W-box of the promoter; disruption of the W-box abolished the activation. Transient expression of AaWRKY1 cDNA in A. annua leaves clearly activated the expression of the majority of artemisinin biosynthetic genes. These results strongly suggest the involvement of the AaWRKY1 transcription factor in the regulation of artemisinin biosynthesis, and indicate that ADS is a target gene of AaWRKY1 in A. annua.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Artemisia annua/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Artemisia annua/metabolismo , Artemisininas/metabolismo , Clonación Molecular , ADN de Plantas/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de ADN , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética
4.
Planta Med ; 70(4): 347-52, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15095151

RESUMEN

The flowering promoting factor1 ( fpf1) from Arabidopsis thaliana was transferred into Artemisia annua L. via Agrobacterium tumefaciens. The fpf1 gene was firstly inserted in the binary vector pBI121 under the control of CaMV 35S promoter to construct the plant expression vector pBIfpf1, then leaf explants of A. annua were infected with A. tumefaciens LBA4404 containing pBIfpf1, and induced shoots. Transgenic plants were obtained through the selection with kanamycin. PCR, PCR-Southern and Southern blot analyses confirmed that the foreign fpf1 gene had been integrated into the A. annua genome. RT-PCR and RT-PCR-Southern analyses suggested that the foreign fpf1 gene had expressed at the transcriptional level. Under short-day conditions, the flowering time of fpf1 transgenic plants was about 20 days earlier than the non-transformed plants; however, no significant differences were detected in artemisinin content between the flowering transgenic plants and the non-flowering non-transgenic plants. These results showed that flowering is not a necessary factor for increasing the artemisinin content, furthermore, there may be no direct linkage between flowering and artemisinin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Artemisia annua/genética , Artemisininas/metabolismo , Fitoterapia , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Artemisia annua/crecimiento & desarrollo , Artemisia annua/metabolismo , Cartilla de ADN , Flores , Humanos , Luz , Hojas de la Planta , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Zhongguo Zhong Yao Za Zhi ; 28(10): 921-3, 2003 Oct.
Artículo en Chino | MEDLINE | ID: mdl-15620179

RESUMEN

OBJECTIVE: To study the effect of several factors on the quantity of hypericin in H. perforatum callus. METHOD: High efficiency liquid phase chromatography and plant tissue culture were applied. RESULT AND CONCLUSION: When the ratio of nitro-nitrogen to amina-nitrogen is 3:1, the callus biomass is 1.6-fold and the synthetic mass of hypericin rises. 0.1-0.20 mg x L(-1) mannose improves the content of total hypericin. The addition of PVP or PVPP can promote improvement of the growth and biosynthesis of callus.


Asunto(s)
Hypericum/crecimiento & desarrollo , Nitrógeno/farmacología , Perileno/análogos & derivados , Plantas Medicinales/crecimiento & desarrollo , Antracenos , Medios de Cultivo , Hypericum/metabolismo , Manosa/farmacología , Perileno/metabolismo , Plantas Medicinales/metabolismo , Povidona/análogos & derivados , Povidona/farmacología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA