Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 14(1): 4877, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573360

RESUMEN

Extracellular vesicles (EVs) are important for cell-to-cell communication in animals. EVs also play important roles in plant-microbe interactions, but the underlying mechanisms remain elusive. Here, proteomic analyses of EVs from the soybean (Glycine max) root rot pathogen Phytophthora sojae identify the tetraspanin family proteins PsTET1 and PsTET3, which are recognized by Nicotiana benthamiana to trigger plant immune responses. Both proteins are required for the full virulence of P. sojae. The large extracellular loop (EC2) of PsTET3 is the key region recognized by N. benthamiana and soybean cells in a plant receptor-like kinase NbSERK3a/b dependent manner. TET proteins from oomycete and fungal plant pathogens are recognized by N. benthamiana thus inducing immune responses, whereas plant-derived TET proteins are not due to the sequence divergence of sixteen amino acids at the C-terminal of EC2. This feature allows plants to distinguish self and non-self EVs to trigger active defense responses against pathogenic eukaryotes.


Asunto(s)
Vesículas Extracelulares , Phytophthora , Proteómica , Phytophthora/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virulencia , Vesículas Extracelulares/metabolismo , Glycine max/metabolismo , Enfermedades de las Plantas/microbiología
2.
New Phytol ; 240(2): 784-801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37615219

RESUMEN

The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Phytophthora , Animales , Nicotiana/genética , Leucina , Inmunidad Innata , Mamíferos
3.
PLoS Pathog ; 19(3): e1011256, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36952577

RESUMEN

Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.


Asunto(s)
Phytophthora , Reproducción Asexuada , Transcriptoma , Phytophthora/enzimología , Phytophthora/genética , Phytophthora/crecimiento & desarrollo , Phytophthora/patogenicidad , Reproducción Asexuada/genética , Regulación Fúngica de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Estructuras Fúngicas/enzimología , Estructuras Fúngicas/genética , Estructuras Fúngicas/crecimiento & desarrollo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Enfermedades de las Plantas/microbiología
4.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36625683

RESUMEN

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Asunto(s)
Phytophthora , Solanum , Proteínas/metabolismo , Plantas/metabolismo , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/metabolismo , Solanum/metabolismo , Enfermedades de las Plantas
5.
Phytopathology ; 112(11): 2351-2359, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35694885

RESUMEN

A leucine-rich repeat (LRR) is a widespread structural motif of 20 to 30 amino acids with characteristic repetitive sequences rich in leucine. LRR-containing proteins are critical for ligand recognition and binding, participating in plant development and defense. Like plants, oomycetes also harbor genes encoding LRR-containing proteins, but their functions remain largely unknown. We identified a zoospore-upregulated gene from Phytophthora sojae with LRRs and an extra structural maintenance of chromosomes-like domain. We generated knockout and complemented knockout strains of this LRR protein and found that its deletion resulted in a pronounced reduction in zoospore mobility and chemotaxis, cyst germination, and virulence. Interestingly, micro-examination of zoospores under a scanning electron microscope revealed irregularly shaped zoospores without flagella in these deletion mutants. In addition, the reintroduction of this LRR protein into the knockout mutant reversed all the deficiencies. Our data demonstrate a critical role for the Phytophthora LRR protein in modulating zoospore development, which impairs migration to the host soybean and affects the spread of Phytophthora pathogens.


Asunto(s)
Phytophthora , Phytophthora/genética , Leucina , Proteínas Repetidas Ricas en Leucina , Enfermedades de las Plantas/genética , Glycine max/genética , Flagelos/genética
6.
J Integr Plant Biol ; 63(2): 365-377, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32725938

RESUMEN

Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean; its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease (RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Células Vegetales/microbiología , Ribonucleasas/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Fusarium/clasificación , Filogenia , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Proteómica , ARN de Planta/metabolismo , Glycine max/microbiología , Nicotiana/citología , Regulación hacia Arriba , Virulencia
7.
Mol Plant Microbe Interact ; 33(8): 1046-1058, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32330072

RESUMEN

RXLR effectors, a class of secreted proteins that are transferred into host cells to manipulate host immunity, have been reported to widely exist in oomycetes, including those from genera Phytophthora, Hyaloperonospora, Albugo, and Saprolegnia. However, in Pythium species, no RXLR effector has yet been characterized, and the origin and evolution of such virulent effectors are still unknown. Here, we developed a modified regular expression method for de novo identification of RXLRs and characterized 359 putative RXLR effectors in nine Pythium species. Phylogenetic analysis revealed that all oomycetous RXLRs formed a single superfamily, suggesting that they might have a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures, and genome locations. In particular, there were significantly more RXLR proteins in the mosquito biological control agent P. guiyangense than in the other eight Pythium species, and P. guiyangense RXLRs might be the result of gene duplication and genome rearrangement events, as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts of the majority of the predicted RXLR genes, with some RXLR effectors induced in infection stages and one RXLR showing necrosis-inducing activity. Furthermore, all predicted RXLR genes were cloned from two biocontrol agents, P. oligandrum and P. periplocum, and three of the RXLR genes were found to induce a defense response in Nicotiana benthamiana. Taken together, our findings represent the first evidence of RXLR effectors in Pythium species, providing valuable information on their evolutionary patterns and the mechanisms of their interactions with diverse hosts.


Asunto(s)
Familia de Multigenes , Pythium/genética , Genoma , Filogenia , Phytophthora , Pythium/patogenicidad , Sintenía
8.
New Phytol ; 223(2): 839-852, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30963588

RESUMEN

Phytophthora pathogens manipulate host innate immunity by secreting numerous RxLR effectors, thereby facilitating pathogen colonization. Predicted single and tandem repeats of WY domains are the most prominent C-terminal motifs conserved across the Phytophthora RxLR superfamily. However, the functions of individual WY domains in effectors remain poorly understood. The Phytophthora sojae effector PSR1 promotes infection by suppressing small RNA biogenesis in plant hosts. We identified one single WY domain following the RxLR motif in PSR1. This domain was required for RNA silencing suppression activity and infection in Nicotiana benthamiana, Arabidopsis and soybean. Mutations of the conserved residues in the WY domain did not affect the subcellular localization of PSR1 but abolished its effect on plant development and resistance to viral and Phytophthora pathogens. This is at least in part due to decreased protein stability of the PSR1 mutants in planta. The identification of the WY domain in PSR1 allows predicts that a family of PSR1-like effectors also possess RNA silencing suppression activity. Mutation of the conserved residues in two members of this family, PpPSR1L from P. parasitica and PcPSR1L from P. capsici, perturbed their biological functions, indicating that the WY domain is critical in Phytophthora PSR1 and PSR1-like effectors.


Asunto(s)
Phytophthora/metabolismo , Proteínas/química , Proteínas/metabolismo , Interferencia de ARN , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Secuencia Conservada , Mutación/genética , Fenotipo , Phytophthora/patogenicidad , Raíces de Plantas/microbiología , Unión Proteica , Dominios Proteicos , Proteínas/genética , Glycine max/microbiología
9.
Cell Host Microbe ; 25(1): 153-165.e5, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30595554

RESUMEN

RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.


Asunto(s)
Arabidopsis/inmunología , Susceptibilidad a Enfermedades/microbiología , Phytophthora/metabolismo , Phytophthora/patogenicidad , Enfermedades de las Plantas/inmunología , Interferencia de ARN/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Reporteros/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , MicroARNs/genética , MicroARNs/inmunología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nicotiana , Verticillium , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
New Phytol ; 222(1): 425-437, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394556

RESUMEN

Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.


Asunto(s)
Etilenos/metabolismo , Glycine max/metabolismo , Glycine max/microbiología , Liasas/metabolismo , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Proteínas/metabolismo , Resistencia a la Enfermedad , Estabilidad de Enzimas , Silenciador del Gen , Mutación/genética , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Glycine max/inmunología , Nicotiana/genética , Nicotiana/microbiología
11.
Nat Commun ; 9(1): 594, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426870

RESUMEN

Activation of innate immunity by membrane-localized receptors is conserved across eukaryotes. Plant genomes contain hundreds of such receptor-like genes and those encoding proteins with an extracellular leucine-rich repeat (LRR) domain represent the largest family. Here, we develop a high-throughput approach to study LRR receptor-like genes on a genome-wide scale. In total, 257 tobacco rattle virus-based constructs are generated to target 386 of the 403 identified LRR receptor-like genes in Nicotiana benthamiana for silencing. Using this toolkit, we identify the LRR receptor-like protein Response to XEG1 (RXEG1) that specifically recognizes the glycoside hydrolase 12 protein XEG1. RXEG1 associates with XEG1 via the LRR domain in the apoplast and forms a complex with the LRR receptor-like kinases BAK1 and SOBIR1 to transduce the XEG1-induced defense signal. Thus, this genome-wide silencing assay is demonstrated to be an efficient toolkit to pinpoint new immune receptors, which will contribute to developing durable disease resistance.


Asunto(s)
Glicósido Hidrolasas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Secuencia de Aminoácidos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/metabolismo , Proteínas Repetidas Ricas en Leucina , Filogenia , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/clasificación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/clasificación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/clasificación , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Aminoácido , Nicotiana/metabolismo , Nicotiana/microbiología
12.
Curr Biol ; 27(7): 981-991, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318979

RESUMEN

Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of histone acetyltransferase (HAT) in plants. PsAvh23 binds to the ADA2 subunit of the HAT complex SAGA and disrupts its assembly by interfering with the association of ADA2 with the catalytic subunit GCN5. As such, PsAvh23 suppresses H3K9 acetylation mediated by the ADA2/GCN5 module and increases plant susceptibility. Expression of PsAvh23 or silencing of GmADA2/GmGCN5 resulted in misregulation of defense-related genes, most likely due to decreased H3K9 acetylation levels at the corresponding loci. This study highlights an effective counter-defense mechanism by which a pathogen effector suppresses the activation of defense genes by interfering with the function of the HAT complex during infection.


Asunto(s)
Proteínas Fúngicas/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Phytophthora/fisiología , Phytophthora/patogenicidad , Transcripción Genética , Acetilación , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta , Glycine max/genética , Glycine max/inmunología , Glycine max/microbiología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Virulencia
13.
New Phytol ; 214(1): 361-375, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28134441

RESUMEN

Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta.


Asunto(s)
Phytophthora/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Plantas/microbiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Muerte Celular , Núcleo Celular/metabolismo , Phytophthora/aislamiento & purificación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Transporte de Proteínas , Proteínas/química
14.
Fungal Genet Biol ; 98: 39-45, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27939344

RESUMEN

Sexual and asexual reproduction are two key processes in the pathogenic cycle of many filamentous pathogens. However in Peronophythora litchii, the causal pathogen for the litchi downy blight disease, critical regulator(s) of sexual or asexual differentiation has not been elucidated. In this study, we cloned a gene named PlM90 from P. litchii, which encodes a putative Puf RNA-binding protein. We found that PlM90 was highly expressed during asexual development, and much higher than that during sexual development, while relatively lower during cyst germination and plant infection. By polyethylene glycol (PEG)-mediated protoplast transformation, we generated three PlM90-silenced transformants and found a severely impaired ability in sexual spore production and a delay in stages of zoospore release and encystment. However, the pathogenicity of P. litchii was not affected by PlM90-silencing. Therefore we conclude that PlM90 specifically regulates the sexual and asexual differentiation of P. litchii.


Asunto(s)
Proteínas Fúngicas/genética , Phytophthora/genética , Proteínas de Unión al ARN/genética , Reproducción Asexuada/genética , Esporas Fúngicas/genética , Secuencia de Aminoácidos/genética , Frutas/genética , Frutas/microbiología , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Litchi/microbiología , Phytophthora/crecimiento & desarrollo , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/biosíntesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad
15.
Mol Plant Pathol ; 17(2): 272-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25976113

RESUMEN

Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G-protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1-interacting proteins, including PsHint1, a histidine triad (HIT) domain-containing protein orthologous to human HIT nucleotide-binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms of PsGPA1. An analysis of the gene-silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1-silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα-independent pathway involved in the pathogenicity of P. sojae.


Asunto(s)
Quimiotaxis , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Phytophthora/citología , Phytophthora/patogenicidad , Subunidades alfa de la Proteína de Unión al GTP/genética , Regulación de la Expresión Génica , Silenciador del Gen , Hifa/crecimiento & desarrollo , Filogenia , Phytophthora/genética , Esporas/fisiología , Transformación Genética
16.
PLoS Pathog ; 11(8): e1005139, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26317500

RESUMEN

Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a "helper" that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b.


Asunto(s)
Ciclofilinas/inmunología , Glycine max/parasitología , Interacciones Huésped-Parásitos/fisiología , Phytophthora/patogenicidad , Enfermedades de las Plantas/inmunología , Pirofosfatasas/inmunología , Secuencia de Aminoácidos , Western Blotting , Ciclofilinas/metabolismo , Inmunoprecipitación , Datos de Secuencia Molecular , Phytophthora/inmunología , Phytophthora/metabolismo , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Pirofosfatasas/metabolismo , Técnicas del Sistema de Dos Híbridos , Virulencia , Hidrolasas Nudix
17.
Plant Cell ; 27(7): 2057-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26163574

RESUMEN

We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and ß-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery.


Asunto(s)
Glycine max/inmunología , Glycine max/microbiología , Glicósido Hidrolasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Phytophthora/enzimología , Phytophthora/patogenicidad , Factores de Virulencia/metabolismo , Bacterias/enzimología , Capsicum/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Glicósido Hidrolasas/aislamiento & purificación , Hidrólisis , Solanum lycopersicum/metabolismo , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Glycine max/citología , Nicotiana/citología , Nicotiana/metabolismo , Nicotiana/microbiología , Virulencia
18.
PLoS Pathog ; 11(4): e1004801, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25837042

RESUMEN

Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions.


Asunto(s)
Evolución Biológica , Genoma Fúngico , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Virulencia/genética , Secuencia de Bases , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Genes Fúngicos/genética , Estudio de Asociación del Genoma Completo , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa
19.
Mol Plant Pathol ; 16(1): 61-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24889742

RESUMEN

The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.


Asunto(s)
Glycine max/microbiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Phytophthora/enzimología , Phytophthora/patogenicidad , Especies Reactivas de Oxígeno/metabolismo , Esporas/crecimiento & desarrollo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Espacio Extracelular/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Lacasa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Ósmosis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Reproducción/efectos de los fármacos , Plantones/microbiología , Cloruro de Sodio/farmacología , Glycine max/efectos de los fármacos , Glycine max/genética , Esporas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Transformación Genética/efectos de los fármacos
20.
BMC Genomics ; 14: 839, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24286285

RESUMEN

BACKGROUND: Basic leucine zipper (bZIP) transcription factors are present exclusively in eukaryotes and constitute one of the largest and most diverse transcription factor families. The proteins are responsible for central developmental and physiological processes in plants, animals, and fungi, including the pathogenicity of fungal plant pathogens. However, there is limited understanding of bZIPs in oomycetes, which are fungus-like organisms in the kingdom Stramenopila. Oomycetes include many destructive plant pathogens, including the well-studied species Phytophthora sojae, which causes soybean stem and root rot. RESULTS: Candidate bZIPs encoded in the genomes of P. sojae and four other oomycetes, two diatoms, and two fungal species were predicted using bioinformatic methods. Comparative analysis revealed expanded numbers of bZIP candidates in oomycetes, especially the Phytophthora species, due to the expansion of several novel bZIP classes whose highly conserved asparagines in basic DNA-binding regions were substituted by other residues such as cysteine. The majority of these novel bZIP classes were mostly restricted to oomycetes. The large number of novel bZIPs appears to be the result of widespread gene duplications during oomycete evolution. The majority of P. sojae bZIP candidates, including both conventional and novel bZIP classes, were predicted to contain canonical protein secondary structures. Detection of gene transcripts using digital gene expression profiling and qRT-PCR suggested that most of the candidates were not pseudogenes. The major transcriptional shifts of bZIPs occurred during the zoosporangia/zoospore/cyst and host infection stages. Several infection-associated bZIP genes were identified that were positively regulated by H2O2 exposure. CONCLUSIONS: The identification of large classes of bZIP proteins in oomycetes with novel bZIP motif variants, that are conserved and developmentally regulated and thus presumably functional, extends our knowledge of this important family of eukaryotic transcription factors. It also lays the foundation for detailed studies of the roles of these proteins in development and infection in P. sojae and other oomycetes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Perfilación de la Expresión Génica , Filogenia , Phytophthora/genética , Transcripción Genética , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Análisis por Conglomerados , ADN/química , ADN/genética , ADN/metabolismo , Duplicación de Gen , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Familia de Multigenes , Oomicetos/genética , Oomicetos/metabolismo , Phytophthora/clasificación , Phytophthora/metabolismo , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA