Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cancer Ther ; 20(9): 1702-1712, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34158344

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease with poor outcomes, overwhelmingly due to relapse. Minimal residual disease (MRD), defined as the persistence of leukemic cells after chemotherapy treatment, is thought to be the major cause of relapse. The origins of relapse in AML have been traced to rare therapy-resistant leukemic stem cells (LSCs) that are already present at diagnosis. Effective treatment strategies for long-term remission are lacking, as it has been difficult to eliminate LSCs with conventional therapy. Here, we proposed a new approach based on the chimeric antigen receptor (CAR)-directed T lymphocytes, targeting T-cell immunoglobulin, and mucin domain 3 (TIM-3) to treat MRD in patients with AML. TIM-3 is selected as the target because it is highly expressed on AML blasts and LSCs in most subtypes regardless of the patient's genetic characteristics and treatment course. Moreover, it is absent in the normal hematopoietic stem cells, granulocytes, naïve lymphocytes, and most normal nonhematopoietic tissues. Using a naïve human Fab phage display library, we isolated an anti-human TIM-3 antibody and designed a second-generation anti-TIM-3. Our anti-TIM-3 CAR T cells exhibit potent antileukemic activity against AML cell lines and primary AML blasts, and in the mouse models. More importantly, we demonstrate efficient killing of the primary LSCs directly isolated from the patients. Hence, eradication of the LSCs present in the MRD by anti-TIM-3 CAR T-cell therapy following the first-line treatment may improve the clinical outcomes of patients with AML.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia Mieloide Aguda/terapia , Células Madre Neoplásicas/patología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Front Immunol ; 9: 1193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29904383

RESUMEN

Human influenza virus (IAV) are among the most common pathogens to cause human respiratory infections. A better understanding on interplay between IAV and host factors may provide clues for disease prevention and control. While many viruses are known to downregulate p53 upon entering the cell to reduce the innate host antiviral response, IAV infection is unusual in that it activates p53. However, it has not been clear whether this process has proviral or antiviral effects. In this study, using human isogenic p53 wild-type and p53null A549 cells generated from the CRISPR/Cas9 technology, we observed that p53null cells exhibit significantly reduced viral propagation when infected with influenza A virus (strain A/Puerto Rico/8/1934 H1N1). Genome-wide microarray analysis revealed that p53 regulates the expression of a large set of interferon-inducible genes, among which the interferon-induced transmembrane family members IFITM1, IFITM2, and IFITM3 were most significantly downregulated by the expression of p53. Knockdown of interferon-induced transmembrane proteins (IFITMs) by short interfering RNAs enhanced influenza virus infectivity in p53null A549 cells, while overexpressed IFITMs in A549 cells blocked virus entry. Intriguingly, regulation of IFITMs by p53 is independent of its transcriptional activity, as the p53 short isoform Δ40p53 recapitulates IFITM regulation. Taken together, these data reveal that p53 activation by IAV is an essential step in maintaining its infectivity. This novel association between human p53 and the broad spectrum antiviral proteins, the IFITMs, demonstrates a previous mechanism employed by influenza virus to enhance its propagation via p53 inhibition of IFITMs.


Asunto(s)
Antígenos de Diferenciación/genética , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Mucosa Respiratoria/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Clonación Molecular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/genética , Análisis por Micromatrices , ARN Interferente Pequeño/genética , Proteína p53 Supresora de Tumor/genética , Virulencia , Internalización del Virus , Replicación Viral
3.
Sci Rep ; 7(1): 5072, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698575

RESUMEN

Host CD8 T cell response to viral infections involves recognition of 8-10-mer peptides presented by MHC-I molecules. However, proteasomes generate predominantly 2-7-mer peptides, but the role of these peptides is largely unknown. Here, we show that single short peptides of <8-mer from Latent Membrane Protein 2 (LMP2) of Epstein Barr Virus (EBV) can bind HLA-A*11:01 and stimulate CD8+ cells. Surprisingly, two peptide fragments between 4-7-mer derived from LMP2(340-349) were able to complement each other, forming combination epitopes that can stimulate specific CD8+ T cell responses. Moreover, peptides from self-antigens can complement non-self peptides within the HLA binding cleft, forming neoepitopes. Solved structures of a tetra-complex comprising two peptides, HLA and ß2-microglobulin revealed the free terminals of the two peptides to adopt an upward conformation directed towards the T cell receptor. Our results demonstrate a previously unknown mix-and-match combination of dual peptide occupancy in HLA that can generate vast combinatorial complexity.


Asunto(s)
Antivirales/inmunología , Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Péptidos/inmunología , Alelos , Secuencia de Aminoácidos , Sitios de Unión , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos/inmunología , Péptidos/química , Estabilidad Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Electricidad Estática
4.
Sheng Li Xue Bao ; 68(5): 691-698, 2016 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-27778036

RESUMEN

The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34+ HSC was collected by MACS immunomagnetic beads. The selected CD34+ HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34+ percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that the biological functions of HSC/HPC are maintained.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Antígenos CD34 , Técnicas de Cultivo de Célula , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Sangre Fetal , Citometría de Flujo , Humanos , Interleucina-3 , Interleucina-6 , Factor de Células Madre , Cordón Umbilical , Tirosina Quinasa 3 Similar a fms
5.
Mol Cell Biol ; 27(11): 4105-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17371839

RESUMEN

The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced in the embryonic pituitary in response to delivery of the hypothalamic gonadotropin releasing hormone (GnRH). GnRH has a pivotal role in reestablishing gonadotropin levels at puberty in primates, and for many species with extended reproductive cycles, these are reinitiated in response to central nervous system-induced GnRH release. Thus, a clear role is evident for GnRH in overcoming repression of these genes. Although the mechanisms through which GnRH actively stimulates LH and FSH beta-subunit (FSHbeta) gene transcription have been described in some detail, there is currently no information on how GnRH overcomes repression in order to terminate reproductively inactive stages. We show here that GnRH overcomes histone deacetylase (HDAC)-mediated repression of the gonadotropin beta-subunit genes in immature gonadotropes. The repressive factors associated with each of these genes comprise distinct sets of HDACs and corepressors which allow for differentially regulated derepression of these two genes, produced in the same cell by the same regulatory hormone. We find that GnRH activation of calcium/calmodulin-dependent protein kinase I (CaMKI) plays a crucial role in the derepression of the FSHbeta gene involving phosphorylation of several class IIa HDACs associated with both the FSHbeta and Nur77 genes, and we propose a model for the mechanisms involved. In contrast, derepression of the LH beta-subunit gene is not CaMK dependent. This demonstration of HDAC-mediated repression of these genes could explain the temporal shut-down of reproductive function at certain periods of the life cycle, which can easily be reversed by the actions of the hypothalamic regulatory hormone.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/metabolismo , Regulación de la Expresión Génica , Gonadotrofos/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Histona Desacetilasas/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Subunidades de Proteína/metabolismo , Animales , Calcineurina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Hormona Folículo Estimulante de Subunidad beta/genética , Gonadotrofos/citología , Histona Desacetilasas/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Ratones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Subunidades de Proteína/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA