Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nano Lett ; 21(2): 1115-1123, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33448859

RESUMEN

Ultrasmall ferrite nanoparticles (UFNPs) have emerged as powerful magnetic resonance imaging (MRI) T1 nanoprobe for noninvasive visualization of biological events. However, the structure-relaxivity relationship and regulatory mechanism of UFNPs remain elusive. Herein, we developed chemically engineered 3.8 nm ZnxFe3-xO4@ZnxMnyFe3-x-yO4 (denoted as ZnxF@ZnxMnyF) nanoparticles with precise dopants control in both crystalline core and disordered shell as a model system to assess the impact of dopants on the relaxometric properties of UFNPs. It is determined that the core-shell dopant architecture allows the optimal tuning of r1 relaxivity for Zn0.4F@Zn0.4Mn0.2F up to 20.22 mM-1 s-1, which is 5.2-fold and 6.5-fold larger than that of the original UFNPs and the clinically used Gd-DTPA. Moreover, the high-performing UFNPs nanoprobe, when conjugated with a targeting moiety AMD3100, enables the in vivo MRI detection of small lung metastasis with greatly enhanced sensitivity. Our results pave the way toward the chemical design of ultrasensitive T1 nanoprobe for advanced molecular imaging.

2.
Adv Healthc Mater ; 5(16): 2092-104, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27297640

RESUMEN

Uniform wüstite Fe0.6 Mn0.4 O nanoflowers have been successfully developed as an innovative theranostic agent with T1 -T2 dual-mode magnetic resonance imaging (MRI), for diagnostic applications and therapeutic interventions via magnetic hyperthermia. Unlike their antiferromagnetic bulk counterpart, the obtained Fe0.6 Mn0.4 O nanoflowers show unique room-temperature ferromagnetic behavior, probably due to the presence of an exchange coupling effect. Combined with the flower-like morphology, ferromagnetic Fe0.6 Mn0.4 O nanoflowers are demonstrated to possess dual-modal MRI sensitivity, with longitudinal relaxivity r1 and transverse relaxivity r2 as high as 4.9 and 61.2 mm(-1) s(-1) [Fe]+[Mn], respectively. Further in vivo MRI carried out on the mouse orthotopic glioma model revealed gliomas are clearly delineated in both T1 - and T2 -weighted MR images, after administration of the Fe0.6 Mn0.4 O nanoflowers. In addition, the Fe0.6 Mn0.4 O nanoflowers also exhibit excellent magnetic induction heating effects. Both in vitro and in vivo magnetic hyperthermia experimentation has demonstrated that magnetic hyperthermia by using the innovative Fe0.6 Mn0.4 O nanoflowers can induce MCF-7 breast cancer cell apoptosis and a complete tumor regression without appreciable side effects. The results have demonstrated that the innovative Fe0.6 Mn0.4 O nanoflowers can be a new magnetic theranostic platform for in vivo T1 -T2 dual-mode MRI and magnetic thermotherapy, thereby achieving a one-stop diagnosis cum effective therapeutic modality in cancer management.


Asunto(s)
Neoplasias de la Mama , Medios de Contraste , Compuestos Férricos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética , Imanes/química , Compuestos de Manganeso , Nanopartículas , Óxidos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Medios de Contraste/síntesis química , Medios de Contraste/química , Medios de Contraste/farmacología , Femenino , Compuestos Férricos/síntesis química , Compuestos Férricos/química , Compuestos Férricos/farmacología , Humanos , Células MCF-7 , Compuestos de Manganeso/síntesis química , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Óxidos/síntesis química , Óxidos/química , Óxidos/farmacología , Nanomedicina Teranóstica/métodos
3.
J Am Chem Soc ; 132(42): 14803-11, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20882976

RESUMEN

In the present study, quantum dot (QD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2* effect where the r2* relaxivity and r2*/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide. The multiphoton fluorescence imaging and cell uptake of QD capped magnetite NRs are also demonstrated using MGH bladder cancer cells. In particular, these QD capped magnetite NRs can escape from endosomes and be released into the cytoplasm. The obtained results from these exploratory experiments suggest that the cell-penetrating QD capped magnetite NRs could be an excellent dual-modality nanoprobe for intracellular imaging and therapeutic applications. This work has shown great potential of the magnetic vortex core based multifunctional nanoparticle as a high performance nanoprobe for biomedical applications.


Asunto(s)
Óxido Ferrosoférrico , Imagen por Resonancia Magnética/métodos , Nanoestructuras , Puntos Cuánticos , Espectrometría de Fluorescencia/métodos , Humanos , Microscopía Electrónica de Transmisión , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/patología
4.
ACS Nano ; 3(9): 2798-808, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19711908

RESUMEN

We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates. However, the crystallographic orientation-relationships of cubic spinel ferrites and trigonal hematite show strong correlation with their morpologies. The hollow-structured MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.


Asunto(s)
Compuestos Férricos/química , Compuestos Férricos/síntesis química , Nanotubos/química , Elementos de Transición/química , Biomimética , Línea Celular Tumoral , Compuestos Férricos/metabolismo , Gases/química , Humanos , Mediciones Luminiscentes , Neoplasias Pulmonares/patología , Magnetismo , Microscopía Electrónica de Transmisión , Nanocompuestos/química , Fenómenos Ópticos , Peroxidasas/metabolismo , Espectrometría Raman , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA