Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Intervalo de año de publicación
1.
Immunity ; 57(4): 731-751, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599168

RESUMEN

RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.


Asunto(s)
ARN Helicasas DEAD-box , Transducción de Señal , ARN Helicasas DEAD-box/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Proteína 58 DEAD Box , Inmunidad Innata , Receptores Inmunológicos , ARN
2.
Sci Rep ; 13(1): 6318, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072508

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is the most front-line cytoplasmic viral RNA sensor and induces antiviral immune responses. RIG-I recognizes short double-stranded (dsRNA) (< 500 bp), but not long dsRNA (> 500 bp) to trigger antiviral signaling. Since RIG-I is capable of binding with dsRNA irrespective of size, length-dependent RIG-I signaling remains elusive. Here, we demonstrated that RIG-I bound to long dsRNA with slow kinetics. Remarkably, RIG-I/short dsRNA complex efficiently dissociated in an ATP hydrolysis-dependent manner, whereas RIG-I/long dsRNA was stable and did not dissociate. Our study suggests that the dissociation of RIG-I from RIG-I/dsRNA complex could be a step for efficient antiviral signaling. Dissociated RIG-I exhibited homo-oligomerization, acquiring ability to physically associate with MAVS, and biological activity upon introduction into living cells. We herein discuss common and unique mechanisms of viral dsRNA recognition by RIG-I and MDA5.


Asunto(s)
ARN Helicasas DEAD-box , ARN Bicatenario , Proteína 58 DEAD Box/metabolismo , ARN Helicasas DEAD-box/genética , Helicasa Inducida por Interferón IFIH1/genética , ARN Viral/metabolismo , Transducción de Señal , Humanos
3.
PLoS One ; 16(11): e0260443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843580

RESUMEN

Although sensorineural hearing loss (SHL) is relatively common, its cause has not been identified in most cases. Previous studies have suggested that viral infection is a major cause of SHL, especially sudden SHL, but the system that protects against pathogens in the inner ear, which is isolated by the blood-labyrinthine barrier, remains poorly understood. We recently showed that, as audiosensory receptor cells, cochlear hair cells (HCs) are protected by surrounding accessory supporting cells (SCs) and greater epithelial ridge (GER or Kölliker's organ) cells (GERCs) against viral infections. Here, we found that virus-infected SCs and GERCs induce HC death via production of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Notably, the HCs expressed the TRAIL death receptors (DR) DR4 and DR5, and virus-induced HC death was suppressed by TRAIL-neutralizing antibodies. TRAIL-induced HC death was not caused by apoptosis, and was inhibited by necroptosis inhibitors. Moreover, corticosteroids, the only effective drug for SHL, inhibited the virus-induced transformation of SCs and GERCs into macrophage-like cells and HC death, while macrophage depletion also inhibited virus-induced HC death. These results reveal a novel mechanism underlying virus-induced HC death in the cochlear sensory epithelium and suggest a possible target for preventing virus-induced SHL.


Asunto(s)
Células Ciliadas Auditivas/virología , Pérdida Auditiva Sensorineural/virología , Necroptosis , Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Virosis/complicaciones , Animales , Células Cultivadas , Células Ciliadas Auditivas/inmunología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/inmunología , Pérdida Auditiva Sensorineural/patología , Ratones Endogámicos ICR , Virosis/inmunología , Virosis/patología
4.
Cell Mol Immunol ; 18(3): 539-555, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462384

RESUMEN

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Mitocondrias/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal , Virosis/inmunología , Virus/inmunología , Animales , Humanos , Factores Inmunológicos , Interferón Tipo I/inmunología , Interferones/inmunología , Interferón lambda
5.
Sci Rep ; 10(1): 6740, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317718

RESUMEN

To protect the audiosensory organ from tissue damage from the immune system, the inner ear is separated from the circulating immune system by the blood-labyrinth barrier, which was previously considered an immune-privileged site. Recent studies have shown that macrophages are distributed in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis; however, the direct pathogen defence mechanism used by audiosensory receptor hair cells (HCs) has remained obscure. Here, we show that HCs are protected from pathogens by surrounding accessory supporting cells (SCs) and greater epithelial ridge (GER or Kölliker's organ) cells (GERCs). In isolated murine cochlear sensory epithelium, we established Theiler's murine encephalomyelitis virus, which infected the SCs and GERCs, but very few HCs. The virus-infected SCs produced interferon (IFN)-α/ß, and the viruses efficiently infected the HCs in the IFN-α/ß receptor-null sensory epithelium. Interestingly, the virus-infected SCs and GERCs expressed macrophage marker proteins and were eliminated from the cell layer by cell detachment. Moreover, lipopolysaccharide induced phagocytosis of the SCs without cell detachment, and the SCs phagocytosed the bacteria. These results reveal that SCs function as macrophage-like cells, protect adjacent HCs from pathogens, and provide a novel anti-infection inner ear immune system.


Asunto(s)
Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/fisiología , Células Laberínticas de Soporte/inmunología , Macrófagos/inmunología , Ganglio Espiral de la Cóclea/fisiología , Estría Vascular/fisiología , Animales , Animales Recién Nacidos , Escherichia coli/inmunología , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Externas/citología , Inmunidad Innata , Interferón-alfa/biosíntesis , Interferón-alfa/inmunología , Interferón beta/biosíntesis , Interferón beta/inmunología , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/virología , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Ratones , Ratones Endogámicos ICR , Técnicas de Cultivo de Órganos , Fagocitosis/efectos de los fármacos , Saccharomyces cerevisiae/inmunología , Ganglio Espiral de la Cóclea/citología , Estría Vascular/citología , Theilovirus/crecimiento & desarrollo , Theilovirus/patogenicidad
6.
Nucleic Acids Res ; 48(3): 1494-1507, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31799626

RESUMEN

During viral infection, viral nucleic acids are detected by virus sensor proteins including toll-like receptor 3 or retinoic acid-inducible gene I-like receptors (RLRs) in mammalian cells. Activation of these virus sensor proteins induces type-I interferon production and represses viral replication. Recently, we reported that an RLR family member, laboratory of genetics and physiology 2 (LGP2), modulates RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). However, the biological implications remained unclear. Here, we show that LGP2 enhances apoptosis by upregulating apoptosis regulatory genes during viral infection. Sendai virus (SeV) infection increased LGP2 expression approximately 900 times compared to that in non-virus-infected cells. Then, the induced LGP2 interacted with TRBP, resulting in the inhibition of maturation of the TRBP-bound microRNA (miRNA) and its subsequent RNA silencing activity. Gene expression profiling revealed that apoptosis regulatory genes were upregulated during SeV infection: caspases-2, -8, -3 and -7, four cysteine proteases with key roles in apoptosis, were upregulated directly or indirectly through the repression of a typical TRBP-bound miRNA, miR-106b. Our findings may shed light on the mechanism of apoptosis, induced by the TRBP-bound miRNAs through the interaction of TRBP with LGP2, as an antiviral defense system in mammalian cells.


Asunto(s)
MicroARNs/genética , Coactivadores de Receptor Nuclear/genética , ARN Helicasas/genética , Virosis/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Interferencia de ARN , Transducción de Señal/genética , Receptor Toll-Like 3/genética , Virosis/virología , Replicación Viral/genética
7.
Biochem Biophys Res Commun ; 517(4): 662-669, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395337

RESUMEN

Upon viral infection, retinoic acid-inducible gene-I (RIG-I)-like receptors detect viral foreign RNAs and transmit anti-viral signals via direct interaction with the downstream mitochondrial adaptor molecule, interferon (IFN)-ß promoter stimulator-1 (IPS-1), to inhibit viral replication. Although IPS-1 is known to form prion-like oligomers on mitochondria to activate signaling, the mechanisms that regulate oligomer formation remain unclear. Here, we identified an autoinhibitory domain (AD) at amino acids 180-349 to suppress oligomerization of IPS-1 in a resting state and regulate activation of downstream signaling. Size exclusion chromatography (SEC) analysis demonstrated that AD was required to suppress auto-oligomerization of the caspase recruitment domain (CARD) of IPS-1 via intramolecular interactions. This was supported by the observation that cleavage of a peptide bond between IPS-1 CARD and AD by Tobacco Etch virus (TEV) protease relieved autoinhibition. Conversely, deletion of this domain from IPS-1 enhanced signal activation in IFN-reporter assays, suggesting that IPS-1 AD played a critical role in the regulation of IPS-1-mediated anti-viral signal activation. These findings revealed novel molecular interactions involved in the tight regulation of innate anti-viral immunity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Multimerización de Proteína , Transducción de Señal , Secuencia de Aminoácidos , Animales , Interferón Tipo I/metabolismo , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Eliminación de Secuencia , Relación Estructura-Actividad , Regulación hacia Arriba
8.
Genes (Basel) ; 9(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347765

RESUMEN

Exogenous double-stranded RNAs (dsRNAs) similar to viral RNAs induce antiviral RNA silencing or RNA interference (RNAi) in plants or invertebrates, whereas interferon (IFN) response is induced through activation of virus sensor proteins including Toll like receptor 3 (TLR3) or retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) in mammalian cells. Both RNA silencing and IFN response are triggered by dsRNAs. However, the relationship between these two pathways has remained unclear. Laboratory of genetics and physiology 2 (LGP2) is one of the RLRs, but its function has remained unclear. Recently, we reported that LGP2 regulates endogenous microRNA-mediated RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). Here, we investigated the contribution of other RLRs, RIG-I and melanoma-differentiation-associated gene 5 (MDA5), in the regulation of RNA silencing. We found that RIG-I, but not MDA5, also represses short hairpin RNA (shRNA)-induced RNAi by type-I IFN. Our finding suggests that RIG-I, but not MDA5, interacts with TRBP indirectly through LGP2 to function as an RNAi modulator in mammalian cells.

9.
Nucleic Acids Res ; 46(17): 9134-9147, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29939295

RESUMEN

Here we show that laboratory of genetics and physiology 2 (LGP2) virus sensor protein regulates gene expression network of endogenous genes mediated by TAR-RNA binding protein (TRBP)-bound microRNAs (miRNAs). TRBP is an enhancer of RNA silencing, and functions to recruit precursor-miRNAs (pre-miRNAs) to Dicer that processes pre-miRNA into mature miRNA. Viral infection activates the antiviral innate immune response in mammalian cells. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I, melanoma-differentiation-associated gene 5 (MDA5), and LGP2, function as cytoplasmic virus sensor proteins during viral infection. RIG-I and MDA5 can distinguish between different types of RNA viruses to produce antiviral cytokines, including type I interferon. However, the role of LGP2 is controversial. We found that LGP2 bound to the double-stranded RNA binding sites of TRBP, resulting in inhibition of pre-miRNA binding and recruitment by TRBP. Furthermore, although it is unclear whether TRBP binds to specific pre-miRNA, we found that TRBP bound to particular pre-miRNAs with common structural characteristics. Thus, LGP2 represses specific miRNA activities by interacting with TRBP, resulting in selective regulation of target genes. Our findings show that a novel function of LGP2 is to modulate RNA silencing, indicating the crosstalk between RNA silencing and RLR signaling in mammalian cells.


Asunto(s)
Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , ARN Helicasas/fisiología , Proteínas de Unión al ARN/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , MicroARNs/fisiología , Interferencia de ARN , Virus ARN/genética , Virus ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Transducción de Señal
10.
PLoS Pathog ; 12(2): e1005444, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26862753

RESUMEN

RIG-I triggers antiviral responses by recognizing viral RNA (vRNA) in the cytoplasm. However, the spatio-temporal dynamics of vRNA sensing and signal transduction remain elusive. We investigated the time course of events in cells infected with Newcastle disease virus (NDV), a non-segmented negative-strand RNA virus. RIG-I was recruited to viral replication complexes (vRC) and triggered minimal primary type I interferon (IFN) production. RIG-I subsequently localized to antiviral stress granules (avSG) induced after vRC formation. The inhibition of avSG attenuated secondary IFN production, suggesting avSG as a platform for efficient vRNA detection. avSG selectively captured positive-strand vRNA, and poly(A)+ RNA induced IFN production. Further investigations suggested that uncapped vRNA derived from read-through transcription was sensed by RIG-I in avSG. These results highlight how viral infections stimulate host stress responses, thereby selectively recruiting uncapped vRNA to avSG, in which RIG-I and other components cooperate in an efficient antiviral program.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proteína 58 DEAD Box , Humanos , Virus de la Influenza A/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/efectos de los fármacos , Interferón beta/genética , Ratones , Virus de la Enfermedad de Newcastle/genética , ARN Viral/efectos de los fármacos , Receptores Inmunológicos , Estrés Fisiológico
11.
J Biochem ; 159(3): 279-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26748340

RESUMEN

Activation of antiviral innate immunity is triggered by cellular pattern recognition receptors. Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) detect viral non-self RNA in cytoplasm of virus-infected cells and play a critical role in the clearance of the invaded viruses through production of antiviral cytokines. Among the three known RLRs, RIG-I and melanoma differentiation-associated gene 5 recognize distinct non-self signatures of viral RNA and activate antiviral signaling. Recent reports have clearly described the molecular machinery underlying the activation of RLRs and interactions with the downstream adaptor, mitochondrial antiviral signaling protein (MAVS). RLRs and MAVS are thought to form large multimeric filaments around cytoplasmic organelles depending on the presence of Lys63-linked ubiquitin chains. Furthermore, RLRs have been shown to localize to stress-induced ribonucleoprotein aggregate known as stress granules and utilize them as a platform for recognition/activation of signaling. In this review, we will focus on the current understanding of RLR-mediated signal activation and the interactions with stress-induced RNA granules.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Infecciones por Virus ADN/inmunología , Inmunidad Innata , Infecciones por Virus ARN/inmunología , ARN Viral/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Gránulos Citoplasmáticos/virología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Humanos , Helicasa Inducida por Interferón IFIH1 , Ratones , Poliubiquitina/metabolismo , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Receptores Inmunológicos , Receptores de Reconocimiento de Patrones/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal , Estrés Fisiológico/inmunología
12.
Curr Opin Immunol ; 32: 48-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25594890

RESUMEN

In higher vertebrates, recognition of the non-self signature of invading viruses by genome-encoded pattern recognition receptors initiates antiviral innate immunity. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) detect viral RNA as a non-self pattern in the cytoplasm and activate downstream signaling. Detection of viral RNA also activates stress responses resulting in stress granule-like aggregates, which facilitate RLR-mediated antiviral immunity. Among the three RLR family members RIG-I and melanoma differentiation-associated gene 5 (MDA5) recognize distinct viral RNA species with differential molecular machinery and activate signaling through mitochondrial antiviral signaling (MAVS, also known as IPS-1/VISA/Cardif), which leads to the expression of cytokines including type I and III interferons (IFNs) to restrict viral propagation. In this review, we summarize recent knowledge regarding RNA recognition and signal transduction by RLRs and MAVS/IPS-1.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Viral/metabolismo , Transducción de Señal , Animales , Humanos , Inmunidad Innata , Fosforilación , Unión Proteica , ARN Viral/inmunología , Estrés Fisiológico , Ubiquitina/metabolismo
13.
PLoS Pathog ; 10(3): e1004012, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651521

RESUMEN

RIG-I is a DExD/H-box RNA helicase and functions as a critical cytoplasmic sensor for RNA viruses to initiate antiviral interferon (IFN) responses. Here we demonstrate that another DExD/H-box RNA helicase DHX36 is a key molecule for RIG-I signaling by regulating double-stranded RNA (dsRNA)-dependent protein kinase (PKR) activation, which has been shown to be essential for the formation of antiviral stress granule (avSG). We found that DHX36 and PKR form a complex in a dsRNA-dependent manner. By forming this complex, DHX36 facilitates dsRNA binding and phosphorylation of PKR through its ATPase/helicase activity. Using DHX36 KO-inducible MEF cells, we demonstrated that DHX36 deficient cells showed defect in IFN production and higher susceptibility in RNA virus infection, indicating the physiological importance of this complex in host defense. In summary, we identify a novel function of DHX36 as a critical regulator of PKR-dependent avSG to facilitate viral RNA recognition by RIG-I-like receptor (RLR).


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Infecciones por Virus ARN/inmunología , Transducción de Señal/inmunología , eIF-2 Quinasa/inmunología , Gránulos Citoplasmáticos/inmunología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Virus ARN/inmunología , ARN Bicatenario/inmunología , ARN Interferente Pequeño/genética , ARN Viral/inmunología , Receptores Inmunológicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico , Transfección
14.
Microbes Infect ; 15(8-9): 592-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23644230

RESUMEN

The inner ear has been regarded as an immunoprivileged site because of isolation by the blood-labyrinthine barrier. Several reports have indicated the existence of immune cells in the inner ear, but there are no reports showing immunocompetence of the cochlear tissue. In this report, we examined the potential involvement of retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are critical for initiating antiviral innate immune responses. We found that RIG-I and MDA5 are expressed in the mouse cochlear sensory epithelium, including Hensen's and Claudius' cells. Ex vivo viral infection using Theiler's murine encephalomyelitis virus revealed that the virus replicates in these cells and that protein levels of RIG-I and MDA5 are up-regulated. Furthermore, the critical antiviral transcription factor, interferon (IFN) regulatory factor-3, is activated in the infected cells as judged by its nuclear translocation and the accumulation of type I IFN transcripts. These results strongly suggest that RIG-I and MDA5 participate in innate antiviral responses in cochlear tissue.


Asunto(s)
ARN Helicasas DEAD-box/biosíntesis , Epitelio/inmunología , Epitelio/virología , Theilovirus/inmunología , Animales , Proteína 58 DEAD Box , Perfilación de la Expresión Génica , Inmunidad Innata , Técnicas In Vitro , Factor 3 Regulador del Interferón/biosíntesis , Interferón Tipo I/biosíntesis , Helicasa Inducida por Interferón IFIH1 , Ratones , Ratones Endogámicos ICR , Regulación hacia Arriba , Replicación Viral
15.
Mol Immunol ; 54(3-4): 378-85, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23376291

RESUMEN

The interaction between lymphocytes and stromal cells plays important roles in coordinated development of early lymphocytes. IL-7 is an essential cytokine for early lymphocyte development produced by stromal cells in the thymus and bone marrow. Although IL-7 is induced by interaction of early lymphocytes and stromal cells, its molecular basis is still unknown. To address this question, we employed co-culture system with an IL-7-dependent pre-B cell line, DW34, and a thymic stromal cell line, TSt-4. Co-culture with DW34 cells enhanced the levels of IL-7 transcripts in TSt-4 cells. Interestingly, the co-culture also induced transcripts of IFN-α and IFN-ß but not of IFN-γ. In addition, exogenous IFN-ß stimulation increased the levels of IL-7 transcripts in TSt-4 cells. Next, to elucidate the molecular mechanism of IL-7 induction, we analyzed the IL-7 promoter activity by reporter assay. The IL-7 promoter showed specific transcriptional activity in TSt-4 cells. An interferon-stimulated response element (ISRE) in the IL-7 promoter was essential for the induction of IL-7 transcription by both co-culture and IFN-ß stimulation. Finally, overexpression of wild-type and dominant-negative forms of interferon regulatory factors (IRFs) activated and repressed, respectively, the IL-7 promoter in TSt-4 cells. Collectively, these results suggested that IRFs activated by lymphocyte adhesion induce IL-7 transcription through ISRE in stromal cells and that type I IFNs may be involved in the activation of IRFs. Thus, this study implied a physiological function of the IFN/IRF signal during lymphocyte development.


Asunto(s)
Comunicación Celular/fisiología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interleucina-7/biosíntesis , Linfocitos/citología , Células Madre Mesenquimatosas/citología , Células del Estroma/citología , Animales , Secuencia de Bases , Comunicación Celular/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo , Interferón beta/farmacología , Interferones/genética , Interferones/metabolismo , Interleucina-7/genética , Interleucina-7/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Datos de Secuencia Molecular , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo , Regiones Promotoras Genéticas , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Timo/citología , Timo/metabolismo , Transcripción Genética
16.
PLoS One ; 8(1): e53578, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23308256

RESUMEN

The innate immune system recognizes viral nucleic acids and stimulates cellular antiviral responses. Intracellular detection of viral RNA is mediated by the Retinoic acid inducible gene (RIG)-I Like Receptor (RLR), leading to production of type I interferon (IFN) and pro-inflammatory cytokines. Once cells are infected with a virus, RIG-I and MDA5 bind to viral RNA and undergo conformational change to transmit a signal through direct interaction with downstream CARD-containing adaptor protein, IFN-ß promoter stimulator-1 (IPS-1, also referred as MAVS/VISA/Cardif). IPS-1 is composed of N-terminal Caspase Activation and Recruitment Domain (CARD), proline-rich domain, intermediate domain, and C-terminal transmembrane (TM) domain. The TM domain of IPS-1 anchors it to the mitochondrial outer membrane. It has been hypothesized that activated RLR triggers the accumulation of IPS-1, which forms oligomer as a scaffold for downstream signal proteins. However, the exact mechanisms of IPS-1-mediated signaling remain controversial. In this study, to reveal the details of IPS-1 signaling, we used an artificial oligomerization system to induce oligomerization of IPS-1 in cells. Artificial oligomerization of IPS-1 activated antiviral signaling without a viral infection. Using this system, we investigated the domain-requirement of IPS-1 for its signaling. We discovered that artificial oligomerization of IPS-1 could overcome the requirement of CARD and the TM domain. Moreover, from deletion- and point-mutant analyses, the C-terminal Tumor necrosis factor Receptor-Associated Factor (TRAF) binding motif of IPS-1 (aa. 453-460) present in the intermediate domain is critical for downstream signal transduction. Our results suggest that IPS-1 oligomerization is essential for the formation of a multiprotein signaling complex and enables downstream activation of transcription factors, Interferon Regulatory Factor 3 (IRF3) and Nuclear Factor-κB (NF-κB), leading to type I IFN and pro-inflammatory cytokine production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , ARN Helicasas DEAD-box/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Oligopéptidos/farmacología , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos
17.
Hepatology ; 57(1): 46-58, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22911572

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) infection blocks cellular interferon (IFN)-mediated antiviral signaling through cleavage of Cardif by HCV-NS3/4A serine protease. Like NS3/4A, NS4B protein strongly blocks IFN-ß production signaling mediated by retinoic acid-inducible gene I (RIG-I); however, the underlying molecular mechanisms are not well understood. Recently, the stimulator of interferon genes (STING) was identified as an activator of RIG-I signaling. STING possesses a structural homology domain with flaviviral NS4B, which suggests a direct protein-protein interaction. In the present study, we investigated the molecular mechanisms by which NS4B targets RIG-I-induced and STING-mediated IFN-ß production signaling. IFN-ß promoter reporter assay showed that IFN-ß promoter activation induced by RIG-I or Cardif was significantly suppressed by both NS4B and NS3/4A, whereas STING-induced IFN-ß activation was suppressed by NS4B but not by NS3/4A, suggesting that NS4B had a distinct point of interaction. Immunostaining showed that STING colocalized with NS4B in the endoplasmic reticulum. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays demonstrated that NS4B specifically bound STING. Intriguingly, NS4B expression blocked the protein interaction between STING and Cardif, which is required for robust IFN-ß activation. NS4B truncation assays showed that its N terminus, containing the STING homology domain, was necessary for the suppression of IFN-ß promoter activation. NS4B suppressed residual IFN-ß activation by an NS3/4A-cleaved Cardif (Cardif1-508), suggesting that NS3/4A and NS4B may cooperate in the blockade of IFN-ß production. CONCLUSION: NS4B suppresses RIG-I-mediated IFN-ß production signaling through a direct protein interaction with STING. Disruption of that interaction may restore cellular antiviral responses and may constitute a novel therapeutic strategy for the eradication of HCV.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Hepatitis C/inmunología , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 58 DEAD Box , Técnicas de Silenciamiento del Gen , Células HEK293 , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , ARN Helicasas/metabolismo , Receptores Inmunológicos , Serina Endopeptidasas/metabolismo
18.
Biochem Biophys Res Commun ; 428(4): 494-9, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23122814

RESUMEN

Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-ß induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-ß mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-ß mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/inmunología , Hepatitis C/virología , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Proteínas del Núcleo Viral/metabolismo , Transporte Activo de Núcleo Celular , Aminoácidos Básicos , Núcleo Celular/metabolismo , Genoma Viral , Células Hep G2 , Hepacivirus/genética , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/inmunología , Multimerización de Proteína , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/metabolismo
19.
PLoS One ; 7(8): e43031, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912779

RESUMEN

Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) function as cytoplasmic sensors for viral RNA to initiate antiviral responses including type I interferon (IFN) production. It has been unclear how RIG-I encounters and senses viral RNA. To address this issue, we examined intracellular localization of RIG-I in response to viral infection using newly generated anti-RIG-I antibody. Immunohistochemical analysis revealed that RLRs localized in virus-induced granules containing stress granule (SG) markers together with viral RNA and antiviral proteins. Because of similarity in morphology and components, we termed these aggregates antiviral stress granules (avSGs). Influenza A virus (IAV) deficient in non-structural protein 1 (NS1) efficiently generated avSGs as well as IFN, however IAV encoding NS1 produced little. Inhibition of avSGs formation by removal of either the SG component or double-stranded RNA (dsRNA)-dependent protein kinase (PKR) resulted in diminished IFN production and concomitant enhancement of viral replication. Furthermore, we observed that transfection of dsRNA resulted in IFN production in an avSGs-dependent manner. These results strongly suggest that the avSG is the locus for non-self RNA sensing and the orchestration of multiple proteins is critical in the triggering of antiviral responses.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , ARN Helicasas DEAD-box/inmunología , Inmunidad Innata/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , ARN Viral/metabolismo , eIF-2 Quinasa/inmunología , Animales , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Fibroblastos , Células HeLa , Humanos , Inmunohistoquímica , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Células Vero , eIF-2 Quinasa/metabolismo
20.
Biochem Biophys Res Commun ; 415(1): 75-81, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22020100

RESUMEN

In virus-infected cells, viral RNA with non-self structural pattern is recognized by DExD/Hbox RNA helicase, RIG-I. Once RIG-I senses viral RNA, it triggers a signaling cascade, resulting in the activation of genes including type I interferon, which activates antiviral responses. Overexpression of N-terminal caspase activation and recruitment domain (CARD) is sufficient to activate signaling; however basal activity of full-length RIG-I is undetectable. The repressor domain (RD), initially identified as a.a. 735-925, is responsible for diminished basal activity; therefore, it is suggested that RIG-I is under auto-repression in uninfected cells and the repression is reversed upon its encounter with viral RNA. In this report, we further delimited RD to a.a. 747-801, which corresponds to a linker connecting the helicase and the C-terminal domain (CTD). Alanine substitutions of the conserved residues in the linker conferred constitutive activity to full-length RIG-I. We found that the constitutive active mutants do not exhibit ATPase activity, suggesting that ATPase is required for de-repression but not signaling itself. Furthermore, trypsin digestion of recombinant RIG-I revealed that the wild-type, but not linker mutant conforms to the trypsin-resistant structure, containing CARD and helicase domain. The result strongly suggests that the linker is responsible for maintaining RIG-I in a "closed" structure to minimize unwanted production of interferon in uninfected cells. These findings shed light on the structural regulation of RIG-I function.


Asunto(s)
ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/química , Secuencia de Aminoácidos , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , ARN/química , Receptores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA