Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
medRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746151

RESUMEN

While genome sequencing has transformed medicine by elucidating the genetic underpinnings of both rare and common complex disorders, its utility to predict clinical outcomes remains understudied. Here, we used artificial intelligence (AI) technologies to explore the predictive value of genome sequencing in forecasting clinical outcomes following surgery for congenital heart defects (CHD). We report results for a cohort of 2,253 CHD patients from the Pediatric Cardiac Genomics Consortium with a broad range of complex heart defects, pre- and post-operative clinical variables and exome sequencing. Damaging genotypes in chromatin-modifying and cilia-related genes were associated with an elevated risk of adverse post-operative outcomes, including mortality, cardiac arrest and prolonged mechanical ventilation. The impact of damaging genotypes was further amplified in the context of specific CHD phenotypes, surgical complexity and extra-cardiac anomalies. The absence of a damaging genotype in chromatin-modifying and cilia-related genes was also informative, reducing the risk for adverse postoperative outcomes. Thus, genome sequencing enriches the ability to forecast outcomes following congenital cardiac surgery.

2.
Arterioscler Thromb Vasc Biol ; 43(7): e231-e237, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128914

RESUMEN

BACKGROUND: The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS: High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS: BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS: Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.


Asunto(s)
Proteínas Morfogenéticas Óseas , Células Madre Mesenquimatosas , Animales , Fusión Celular , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales Modificados Genéticamente , Comunicación Celular , Células del Estroma/metabolismo
3.
Birth Defects Res ; 110(7): 610-617, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29570242

RESUMEN

OBJECTIVES: Congenital diaphragmatic hernia (CDH) is a developmental defect of the diaphragm that causes high newborn morbidity and mortality. CDH is considered to be a multifactorial disease, with strong evidence implicating genetic factors. Although recent studies suggest the biological role of deleterious germline de novo variants, the effect of gene variants specific to the diaphragm remains unclear, and few single genes have been definitively implicated in human disease. METHODS: We performed genome sequencing on 16 individuals with CDH and their unaffected parents, including 10 diaphragmatic samples. RESULTS: We did not detect damaging somatic mutations in diaphragms, but identified germline heterozygous de novo functional mutations of 14 genes in nine patients. Although the majority of these genes are not known to be associated with CDH, one patient with CDH and cardiac anomalies harbored a frameshift mutation in NR2F2 (aka COUP-TFII), generating a premature truncation of the protein. This patient also carried a missense variant predicted to be damaging in XIRP2 (aka Myomaxin), a transcriptional target of MEF2A. Both NR2F2 and MEF2A map to chromosome 15q26, where recurring de novo deletions and unbalanced translocations have been observed in CDH. CONCLUSIONS: Somatic variants are not common in CDH. To our knowledge, this is the second case of a germline de novo frameshift mutation in NR2F2 in CDH. Since NR2F2 null mice exhibit a diaphragmatic defect, and XIRP2 is implicated in cardiac development, our data suggest the role of these two variants in the etiology of CDH, and possibly cardiac anomalies.


Asunto(s)
Mutación del Sistema de Lectura , Mutación de Línea Germinal , Factor de Transcripción COUP II/genética , Proteínas de Unión al ADN/genética , Femenino , Hernias Diafragmáticas Congénitas/genética , Humanos , Proteínas con Dominio LIM/genética , Factores de Transcripción MEF2/genética , Masculino , Proteínas Nucleares/genética
4.
Cell Rep ; 15(12): 2745-55, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27292639

RESUMEN

A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human MYC and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose.


Asunto(s)
Glucosa/metabolismo , Hígado/metabolismo , Proteínas Represoras/metabolismo , Alelos , Animales , Glucemia/metabolismo , Regulación hacia Abajo/genética , Ayuno/sangre , Glucólisis/genética , Células Hep G2 , Humanos , Masculino , Modelos Biológicos , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Proteínas Represoras/genética , Factores de Riesgo , Pez Cebra
5.
Dis Model Mech ; 8(8): 941-55, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26044958

RESUMEN

Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC), cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS), warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.


Asunto(s)
Acetiltransferasas/genética , Cromátides/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Ectromelia/genética , Ectromelia/patología , Hipertelorismo/genética , Hipertelorismo/patología , Mutación/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Acetiltransferasas/deficiencia , Acetiltransferasas/metabolismo , Animales , Apoptosis , Segregación Cromosómica , Cromosomas/metabolismo , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Inestabilidad Genómica , Índice Mitótico , Modelos Biológicos , Mutagénesis Insercional/genética , Tubo Neural/metabolismo , Tubo Neural/patología , Fenotipo , Retroviridae/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
6.
Development ; 140(19): 4102-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24046323

RESUMEN

Heparan sulfate proteoglycans (HSPGs) control many cellular processes and have been implicated in the regulation of left-right (LR) development by as yet unknown mechanisms. Using lineage-targeted knockdowns, we found that the transmembrane HSPG Syndecan 2 (Sdc2) regulates LR patterning through cell-autonomous functions in the zebrafish ciliated organ of asymmetry, Kupffer's vesicle (KV), including regulation of cell proliferation and adhesion, cilia length and asymmetric fluid flow. Exploring downstream pathways, we found that the cell signaling ligand Fgf2 is exclusively expressed in KV cell lineages, and is dependent on Sdc2 and the transcription factor Tbx16. Strikingly, Fgf2 controls KV morphogenesis but not KV cilia length, and KV morphogenesis in sdc2 morphants can be rescued by expression of fgf2 mRNA. Through an Fgf2-independent pathway, Sdc2 and Tbx16 also control KV ciliogenesis. Our results uncover a novel Sdc2-Tbx16-Fgf2 pathway that regulates epithelial cell morphogenesis.


Asunto(s)
Cilios/metabolismo , Embrión no Mamífero/metabolismo , Células Epiteliales/citología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Sindecano-2/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Hibridación in Situ , Sindecano-2/genética , Proteínas de Dominio T Box/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
Development ; 140(18): 3892-902, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23946439

RESUMEN

As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.


Asunto(s)
Cilios/enzimología , Sulfotransferasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Estructuras Animales/efectos de los fármacos , Estructuras Animales/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Cilios/efectos de los fármacos , Cilios/ultraestructura , Dineínas/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Factores de Crecimiento de Fibroblastos/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Morfolinos/farmacología , Movimiento/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Pez Cebra/embriología
8.
PLoS One ; 8(1): e53372, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326421

RESUMEN

Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage.


Asunto(s)
Líquido Amniótico/citología , Genoma Humano/genética , Células Madre/metabolismo , Antígenos de Superficie/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula/genética , Separación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Fenotipo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma/genética
9.
Mol Cell Biol ; 32(24): 5089-102, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23071090

RESUMEN

Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G(2)/M and the accumulation of cardiomyocytes in the G(0)/G(1) phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27(Kip1), possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27(Kip1). These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies.


Asunto(s)
Proteínas 14-3-3/metabolismo , Cardiopatías Congénitas/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas 14-3-3/deficiencia , Proteínas 14-3-3/genética , Animales , Secuencia de Bases , Ciclo Celular/fisiología , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/anomalías , Corazón Fetal/embriología , Corazón Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Proteínas Oncogénicas/metabolismo
10.
Dis Model Mech ; 3(1-2): 45-56, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20075382

RESUMEN

Li-Fraumeni syndrome (LFS) is a highly penetrant, autosomal dominant, human familial cancer predisposition. Although a key role for the tumor suppressor p53 has been implicated in LFS, the genetic and cellular mechanisms underpinning this disease remain unknown. Therefore, modeling LFS in a vertebrate system that is accessible to both large-scale genetic screens and in vivo cell biological studies will facilitate the in vivo dissection of disease mechanisms, help identify candidate genes, and spur the discovery of therapeutic compounds. Here, we describe a forward genetic screen in zebrafish embryos that was used to identify LFS candidate genes, which yielded a p53 mutant (p53(I166T)) that as an adult develops tumors, predominantly sarcomas, with 100% penetrance. As in humans with LFS, tumors arise in heterozygotes and display loss of heterozygosity (LOH). This report of LOH indicates that Knudson's two-hit hypothesis, a hallmark of human autosomal dominant cancer syndromes, can be modeled in zebrafish. Furthermore, as with some LFS mutations, the zebrafish p53(I166T) allele is a loss-of-function allele with dominant-negative activity in vivo. Additionally, we demonstrate that the p53 regulatory pathway, including Mdm2 regulation, is evolutionarily conserved in zebrafish, providing a bona fide biological context in which to systematically uncover novel modifier genes and therapeutic agents for human LFS.


Asunto(s)
Síndrome de Li-Fraumeni/genética , Modelos Genéticos , Pez Cebra/genética , Alelos , Animales , Apoptosis/efectos de la radiación , Daño del ADN , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Genes Dominantes/genética , Pruebas Genéticas , Heterocigoto , Pérdida de Heterocigocidad/genética , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Estabilidad Proteica/efectos de la radiación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Activación Transcripcional/genética , Activación Transcripcional/efectos de la radiación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Dev Dyn ; 238(12): 3168-74, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19890916

RESUMEN

In order to facilitate high throughput genotyping of zebrafish, we have developed a novel technique that uses High Resolution Melting Analysis (HRMA) to distinguish wild-type, heterozygous mutants and homogyzous mutants. This one hour technique removes the need for restriction enzymes and agarose gels. The generated melting curve profiles are sensitive enough to detect non-specific PCR products. We have been able to reliably genotype three classes of mutations in zebrafish, including point mutants, apc(hu745) (apc(mcr)), and p53(zy7) (p53(I166T)), a small deletion mutant (bap28(y75)) and a retroviral insertion mutant (wdr43(hi821a)). This technique can genotype individual zebrafish embryos and adults (by tail-clip) and is applicable to other model organisms.


Asunto(s)
Análisis Citogenético/métodos , Análisis Mutacional de ADN/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Eficiencia , Embrión no Mamífero , Eliminación de Gen , Genotipo , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Mutantes/análisis , Proteínas Mutantes/genética , Polimorfismo de Nucleótido Simple , Retroviridae/genética , Retroviridae/fisiología , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
12.
Nature ; 458(7238): 651-4, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19242413

RESUMEN

Cilia are cell surface organelles found on most epithelia in vertebrates. Specialized groups of cilia have critical roles in embryonic development, including left-right axis formation. Recently, cilia have been implicated as recipients of cell-cell signalling. However, little is known about cell-cell signalling pathways that control the length of cilia. Here we provide several lines of evidence showing that fibroblast growth factor (FGF) signalling regulates cilia length and function in diverse epithelia during zebrafish and Xenopus development. Morpholino knockdown of FGF receptor 1 (Fgfr1) in zebrafish cell-autonomously reduces cilia length in Kupffer's vesicle and perturbs directional fluid flow required for left-right patterning of the embryo. Expression of a dominant-negative FGF receptor (DN-Fgfr1), treatment with SU5402 (a pharmacological inhibitor of FGF signalling) or genetic and morpholino reduction of redundant FGF ligands Fgf8 and Fgf24 reproduces this cilia length phenotype. Knockdown of Fgfr1 also results in shorter tethering cilia in the otic vesicle and shorter motile cilia in the pronephric ducts. In Xenopus, expression of a dn-fgfr1 results in shorter monocilia in the gastrocoel roof plate that control left-right patterning and in shorter multicilia in external mucociliary epithelium. Together, these results indicate a fundamental and highly conserved role for FGF signalling in the regulation of cilia length in multiple tissues. Abrogation of Fgfr1 signalling downregulates expression of two ciliogenic transcription factors, foxj1 and rfx2, and of the intraflagellar transport gene ift88 (also known as polaris), indicating that FGF signalling mediates cilia length through an Fgf8/Fgf24-Fgfr1-intraflagellar transport pathway. We propose that a subset of developmental defects and diseases ascribed to FGF signalling are due in part to loss of cilia function.


Asunto(s)
Cilios/fisiología , Epitelio/embriología , Epitelio/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Xenopus laevis/embriología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Células Epiteliales/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Macrófagos del Hígado/citología , Macrófagos del Hígado/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Xenopus laevis/metabolismo , Pez Cebra/metabolismo
13.
Int J Cancer ; 120(5): 1005-12, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17131344

RESUMEN

The Wnt signaling pathway is critical for embryonic development and is dysregulated in multiple cancers. Two closely related isoforms of casein kinase I (CKIdelta and epsilon) are positive regulators of this pathway. We speculated that mutations in the autoinhibitory domain of CKIdelta/epsilon might upregulate CKIdelta/epsilon activity and hence Wnt signaling and increase the risk of adenomatous polyps and colon cancer. Exons encoding the CKIepsilon and CKIdelta regulatory domains were sequenced from DNA obtained from individuals with adenomatous polyps and a family history of colon cancer unaffected by familial adenomatous polyposis or hereditary nonpolyposis colorectal cancer (HNPCC). A CKIdelta missense mutation, changing a highly conserved residue, Arg324, to His (R324H), was found in an individual with large and multiple polyps diagnosed at a relatively young age. Two findings indicate that this mutation is biologically active. First, ectopic ventral expression of CKIdelta(R324H) in Xenopus embryos results in secondary axis formation with an additional distinctive phenotype (altered morphological movements) similar to that seen with unregulated CKIepsilon. Second, CKIdelta(R324H) is more potent than wildtype CKIdelta in transformation of RKO colon cancer cells. Although the R324H mutation does not significantly change CKIdelta kinase activity in an in vitro kinase assay or Wnt/beta-catenin signal transduction as assessed by a beta-catenin reporter assay, it alters morphogenetic movements via a beta-catenin-independent mechanism in early Xenopus development. This novel human CKIdelta mutation may alter the physiological role and enhance the transforming ability of CKIdelta through a Wnt/beta-catenin independent mechanism and thereby influence colonic adenoma development.


Asunto(s)
Pólipos Adenomatosos/genética , Quinasa Idelta de la Caseína/genética , Neoplasias del Colon/genética , Pólipos Adenomatosos/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arginina/química , Arginina/genética , Quinasa Idelta de la Caseína/fisiología , Neoplasias del Colon/enzimología , Exones/genética , Heterocigoto , Histidina/química , Histidina/genética , Humanos , Datos de Secuencia Molecular , Mutación , Linaje , Proteínas Wnt/metabolismo , Xenopus , beta Catenina/metabolismo
14.
Proc Natl Acad Sci U S A ; 103(36): 13409-14, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16938888

RESUMEN

Congenital hypertrophy/hyperplasia of the retinal pigmented epithelium is an ocular lesion found in patients harboring mutations in the adenomatous polyposis coli (APC) tumor suppressor gene. We report that Apc-deficient zebrafish display developmental abnormalities of both the lens and retina. Injection of dominant-negative Lef reduced Wnt signaling in the lens but did not rescue retinal differentiation defects. In contrast, treatment of apc mutants with all-trans retinoic acid rescued retinal differentiation defects but had no apparent effect on the lens. We identified Rdh5 as a retina-specific retinol dehydrogenase controlled by APC. Morpholino knockdown of Rdh5 phenocopied the apc mutant retinal differentiation defects and was rescued by treatment with exogenous all-trans retinoic acid. Microarray analyses of apc mutants and Rdh5 morphants revealed a profound overlap in the transcriptional profile of these embryos. These findings support a model wherein Apc serves a dual role in regulating Wnt and retinoic acid signaling within the eye and suggest retinoic acid deficiency as an explanation for APC mutation-associated retinal defects such as congenital hypertrophy/hyperplasia of the retinal pigmented epithelium.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Ojo/embriología , Tretinoina/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Ojo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Microinyecciones , Datos de Secuencia Molecular , Mutación , Oligonucleótidos Antisentido/farmacología , Tretinoina/farmacología , Pez Cebra/genética
15.
Dev Biol ; 287(2): 274-88, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16216239

RESUMEN

Recently, it has become clear that motile cilia play a central role in initiating a left-sided signaling cascade important in establishing the LR axis during mouse and zebrafish embryogenesis. Two genes proposed to be important in this cilia-mediated signaling cascade are polaris and polycystin-2 (pkd2). Polaris is involved in ciliary assembly, while Pkd2 is proposed to function as a Ca(2+)-permeable cation channel. We have cloned zebrafish homologues of polaris and pkd2. Both genes are expressed in dorsal forerunner cells (DFCs) from gastrulation to early somite stages when these cells form a ciliated Kupffer's vesicle (KV). Morpholino-mediated knockdown of Polaris or Pkd2 in zebrafish results in misexpression of left-side-specific genes, including southpaw, lefty1 and lefty2, and randomization of heart and gut looping. By targeting morpholinos to DFCs/KV, we show that polaris and pkd2 are required in DFCs/KV for normal LR development. Polaris morphants have defects in KV cilia, suggesting that the laterality phenotype is due to problems in cilia function per se. We further show that expression of polaris and pkd2 is dependent on the T-box transcription factors no tail and spadetail, respectively, suggesting that these genes have a previously unrecognized role in regulating ciliary structure and function. Our data suggest that the functions of polaris and pkd2 in LR patterning are conserved between zebrafish and mice and that Kupffer's vesicle functions as a ciliated organ of asymmetry.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Cilios/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Determinación Derecha-Izquierda , Proteínas de la Membrana/genética , Ratones , Mutación , Canales Catiónicos TRPP , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
J Biol Chem ; 280(34): 30490-5, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-15967793

RESUMEN

Retinoic acid (RA) is a potent signaling molecule that plays important roles in multiple and diverse developmental processes. The contribution of retinoic acid to promoting the development and differentiation of the vertebrate intestine and the factors that regulate RA production in the gut remain poorly defined. Herein, we report that the novel retinol dehydrogenase, rdh1l, is required for proper gut development and differentiation. rdh1l is expressed ubiquitously during early development but becomes restricted to the gut by 3 days postfertilization. Knockdown of rdh1l results in a robust RA-deficient phenotype including lack of intestinal differentiation, which can be rescued by the addition of exogenous retinoic acid. We report that adenomatous polyposis coli (APC) mutant zebrafish harbor an RA-deficient phenotype including aberrant intestinal differentiation and that these mutants can be rescued by treatment with retinoic acid or injection of rdh1l mRNA. Further, we have found that although APC mutants are deficient in rdh1l expression, they harbor increased expression of raldh2 suggesting the control of RA production by APC is via retinol dehydrogenase activity. These results provide genetic evidence that retinoic acid is required for vertebrate gut development and that the tumor suppressor APC controls the production of RA in the gut by regulating the expression of the retinol dehydrogenase, rdh1l.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Oxidorreductasas de Alcohol/biosíntesis , Oxidorreductasas de Alcohol/fisiología , Intestinos/enzimología , Tretinoina/metabolismo , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/fisiología , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mucosa Intestinal/metabolismo , Intestinos/embriología , Mutación , Fenotipo , ARN/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Pez Cebra
17.
J Biol Chem ; 279(49): 51581-9, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15358764

RESUMEN

Mutations in the APC (adenomatous polyposis coli) tumor suppressor gene cause uncontrolled proliferation and impaired differentiation of intestinal epithelial cells. Recent studies indicate that human colon adenomas and carcinomas lack retinol dehydrogenases (RDHs) and that APC regulates the expression of human RDHL. These data suggest a model wherein APC controls enterocyte differentiation by controlling retinoic acid production. However, the importance of APC and retinoic acid in mediating control of normal enterocyte development and differentiation remains unclear. To examine the relationship between APC and retinoic acid biosynthesis in normal enterocytes, we have identified two novel zebrafish retinol dehydrogenases, termed zRDHA and zRDHB, that show strong expression within the gut of developing zebrafish embryos. Morpholino knockdown of either APC or zRDHB in zebrafish embryos resulted in defects in structures known to require retinoic acid. These defects included cardiac abnormalities, pericardial edema, failed jaw and pectoral fin development, and the absence of differentiated endocrine and exocrine pancreas. In addition, APC or zRDHB morphant fish developed intestines that lacked columnar epithelial cells and failed to express the differentiation marker intestinal fatty acid-binding protein. Treatment of either APC or zRDHB morphant embryos with retinoic acid rescued the defective phenotypes. Downstream of retinoic acid production, we identified hoxc8 as a retinoic acid-induced gene that, when ectopically expressed, rescued phenotypes of APC- and zRDHB-deficient zebrafish. Our data establish a genetic link supporting a critical role for retinoic acid downstream of APC and confirm the importance of retinoic acid in enterocyte differentiation.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Oxidorreductasas de Alcohol/genética , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Tretinoina/fisiología , Oxidorreductasas de Alcohol/química , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Cromatografía Líquida de Alta Presión , ADN Complementario/metabolismo , Enterocitos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , ARN/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tretinoina/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
18.
Curr Biol ; 14(8): 685-90, 2004 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-15084283

RESUMEN

The heart, brain, and gut develop essential left-right (LR) asymmetries. Specialized groups of ciliated cells have been implicated in LR patterning in mouse, chick, frog, and zebrafish embryos. In zebrafish, these ciliated cells are found in Kupffer's vesicle (KV) and are progeny of dorsal forerunner cells (DFCs). However, there is no direct evidence in any vertebrate that the genes involved in LR development are specifically required in ciliated cells. By using a novel method in zebrafish, we knocked down the function of no tail (ntl, homologous to mouse brachyury) in DFCs without affecting its expression in other cells in the embryo. We find that the Ntl transcription factor functions cell autonomously in DFCs to regulate KV morphogenesis and LR determination. This is the first evidence that loss-of-gene function exclusively in ciliated cells perturbs vertebrate LR patterning. Our results demonstrate that the ciliated KV, a transient embryonic organ of previously unknown function, is involved in the earliest known step in zebrafish LR development, suggesting that a ciliary-based mechanism establishes the LR axis in all vertebrate embryos.


Asunto(s)
Tipificación del Cuerpo/fisiología , Expresión Génica , Proteínas de Dominio T Box/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Cilios/fisiología , Embrión no Mamífero/fisiología , Células Epiteliales/fisiología , Proteínas Fetales , Silenciador del Gen , Inmunohistoquímica , Hibridación in Situ , Microscopía Fluorescente , Oligonucleótidos , Proteínas de Dominio T Box/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
19.
J Biol Chem ; 279(13): 13011-7, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14722104

RESUMEN

The Wnt/beta-catenin signaling pathway is important in both development and cancer. Casein kinase Iepsilon (CKIepsilon) is a positive regulator of the canonical Wnt pathway. CKIepsilon itself can be regulated in vitro by inhibitory autophosphorylation, and recent data suggest that in vivo kinase activity can be regulated by extracellular stimuli. We show here that the phosphorylation state and kinase activity of CKIepsilon are directly regulated by Wnt signaling. Coexpression of XWnt-8 or addition of soluble Wnt-3a ligand led to a significant and rapid increase in the activity of endogenous CKIepsilon. The increase in CKIepsilon activity is the result of decreased inhibitory autophosphorylation because it is abolished by preincubation of immunoprecipitated kinase with ATP. Furthermore, mutation of CKIepsilon inhibitory autophosphorylation sites creates a kinase termed CKIepsilon(MM2) that is significantly more active than CKIepsilon and is not activated further upon Wnt stimulation. Autoinhibition of CKIepsilon is biologically relevant because CKIepsilon(MM2) is more effective than CKIepsilon at activating transcription from a Lef1-dependent promoter. Finally, CKIepsilon(MM2) expression in Xenopus embryos induces both axis duplication and additional developmental abnormalities. The data suggest that Wnt signaling activates CKIepsilon by causing transient dephosphorylation of critical inhibitory sites present in the carboxyl-terminal domain of the kinase. Activation of the Wnt pathway may therefore stimulate a cellular phosphatase to dephosphorylate and activate CKIepsilon


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Pez Cebra , Adenosina Trifosfato/metabolismo , Animales , Caseína Quinasas , Línea Celular , Electroforesis en Gel Bidimensional , Genes Reporteros , Humanos , Ligandos , Luciferasas/metabolismo , Ratones , Mutación , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Proteínas Quinasas/genética , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Wnt , Xenopus , Proteínas de Xenopus
20.
Curr Biol ; 12(24): 2136-41, 2002 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-12498689

RESUMEN

During gastrulation, diffusible "organizer" signals, including members of the TGFbeta Nodal subfamily, pattern dorsal mesoderm and the embryonic axes. Simultaneously, negative regulators of these signals, including the Nodal inhibitor Lefty, an atypical TGFbeta factor, are induced by Nodal. This suggests that Lefty-dependent modulation of organizer signaling might regulate dorsal mesoderm patterning and axial morphogenesis. Here, Xenopus Lefty (Xlefty) function was blocked by injection of anti-Xlefty morpholino oligonucleotides (MO). Xlefty-deficient embryos underwent exogastrulation, an aberrant morphogenetic process not predicted from deregulation of the Nodal pathway alone. In the absence of Xlefty, both Nodal- (Xnr2, gsc, cer, Xbra) and Wnt-responsive (gsc, Xnr3) organizer gene expression expanded away from the dorsal blastopore lip. Conversely, coexpression of Xlefty with Nodal or Wnt reduced the ectopic expression of Nodal- (Xbra) and Wnt-responsive (Xnr3) genes in a dose-dependent manner. Furthermore, Xlefty expression in the ectodermal animal pole inhibited endogenous Nodal- and Wnt-responsive gene expression in distant mesoderm cells, indicating that Xlefty inhibition can spread from its source. We hypothesize that Xlefty negatively regulates the spatial extent of Nodal- and Wnt-responsive gene expression in the organizer and that this Xlefty-dependent inhibition is essential for normal organizer patterning and gastrulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Organizadores Embrionarios/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Xenopus/embriología , Xenopus/genética , Proteínas de Pez Cebra , Activinas/genética , Activinas/metabolismo , Animales , Embrión no Mamífero/efectos de los fármacos , Gástrula/metabolismo , Gástrula/fisiología , Proteína Goosecoide , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Factores de Determinación Derecha-Izquierda , Mesodermo/metabolismo , Proteína Nodal , Ligandos de Señalización Nodal , Oligonucleótidos Antisentido/farmacología , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factor de Crecimiento Transformador beta/genética , Proteínas Wnt , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA