Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Sci Adv ; 10(28): eadi4746, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996023

RESUMEN

Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Receptor alfa de Estrógeno , Conducta Alimentaria , Hidroxicolesteroles , Neuronas , Proopiomelanocortina , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Animales , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Proopiomelanocortina/metabolismo , Ratones , Femenino
2.
Angew Chem Int Ed Engl ; : e202409628, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973645

RESUMEN

Transition metal coordination polymers (TM-CP) are promising inexpensive and flexible electrocatalysts for oxygen evolution reaction in water electrolysis, while their facile synthesis and controllable regulation remain challenging. Here we report an anodic oxidation-electrodeposition strategy for the growth of TM-CP (TM = Fe, Co, Ni, Cr, Mn; CP = polyaniline, polypyrrole) films on a variety of metal substrates that act as both catalyst supports and metal ion sources. An exemplified bimetallic NiFe-polypyrrole (NiFe-PPy) features superior mechanical stability in friction and exhibits high activity with long-term durability in alkaline seawater (over 2000 h) and anion exchange membrane electrolyzer devices at current density of 500 mA cm-2. Spectroscopic and microscopic analysis unravels the configurations with atomically distributed metal sites induced by d-π conjugation, which transforms into a mosaic structure with NiFe (oxy)hydroxides embedded in PPy matrix during oxygen evolution. The superior catalytic performance is ascribed to the anchoring effect of PPy that inhibits the metal dissolution, the strong substrate-to-catalyst interaction that ensures good adhesion, and the Fe/Ni-N coordination that modulates the electronic structures to facilitate the deprotonation of *OOH intermediate. This work provides a general strategy and mechanistic insight into building robust inorganic/polymer composite electrodes for oxygen electrocatalysis.

3.
Chin J Dent Res ; 27(2): 133-141, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38953478

RESUMEN

OBJECTIVE: To find efficient cuproptosis-related biomarkers to explore the oncogenesis and progression of oral squamous cell carcinoma (OSCC). METHODS: All the original data were downloaded from the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and Kaplan-Meier survival analysis were used to identify the gene related to survival. Tumor Immune Estimation Resource 2.0 (TIMER 2.0) was used to reveal the different expression of cuproptosis-related gene lipoyltransferase 1 (LIPT1) in various kinds of tumours. RESULTS: LIPT1, as a cuproptosis-related gene, was found to be differentially expressed in the OSCC group and the control group. It was also found to be related to the prognosis of OSCC. Pan cancer analysis showed LIPT1 was also involved in various kinds of tumours. CONCLUSION: All the results demonstrate that the cuproptosis-related gene LIPT1 is highly involved in the oncogenesis and progression of OSCC. These findings give new insight for further research into the cuproptosis-related biomarkers in OSCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Pronóstico , Aciltransferasas/genética , Estimación de Kaplan-Meier
4.
Aging Med (Milton) ; 7(3): 283-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975308

RESUMEN

This commentary highlighted the current knowledge about novel DLL3-targeting agents for refractory small cell lung cancer.

5.
Adv Sci (Weinh) ; : e2402107, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953306

RESUMEN

The extracellular matrix (ECM) is critical for drug resistance in colorectal cancer (CRC). The abundant collagen within the ECM significantly influences tumor progression and matrix-mediated drug resistance (MMDR) by binding to discoidin domain receptor 1 (DDR1), but the specific mechanisms by which tumor cells modulate ECM via DDR1 and ultimately regulate TME remain poorly understand. Furthermore, overcoming drug resistance by modulating the tumor ECM remains a challenge in CRC treatment. In this study, a novel mechanism is elucidated by which DDR1 mediates the interactions between tumor cells and collagen, enhances collagen barriers, inhibits immune infiltration, promotes drug efflux, and leads to MMDR in CRC. To address this issue, a multistage drug delivery system carrying DDR1-siRNA and chemotherapeutic agents is employed to disrupt collagen barriers by silencing DDR1 in tumor, enhancing chemotherapy drugs diffusion and facilitating immune infiltration. These findings not only revealed a novel role for collagen-rich matrix mediated by DDR1 in tumor resistance, but also introduced a promising CRC treatment strategy.

6.
Adv Exp Med Biol ; 1445: 3-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967746

RESUMEN

The canonical theory of immunology stating that "Immunoglobulin (Ig) is produced by B lymphocytes and exerts antibody activity" has been established since the 1970s. However, the discovery of non B cell-derived Igs (non B-Igs), which can exert multiple biological activities in addition to their antibody activities, necessitates a reevaluation of the classic concept of Ig. This has been documented with a number of characteristics related to their structure, modification, genetic regulation as well as the functions associated with clinical conditions, particularly multiple cancers. The discovery of non B-Ig provides us with a new perspective to better understand not only basic immunology, but also various Ig-related clinical manifestations including autoimmune diseases, chronic inflammation, and anaphylaxis. Notably, non B-Ig can directly promote the occurrence of malignant tumours.


Asunto(s)
Inmunoglobulinas , Humanos , Inmunoglobulinas/inmunología , Inmunoglobulinas/genética , Animales , Linfocitos B/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Enfermedades Autoinmunes/inmunología , Inflamación/inmunología
7.
J Org Chem ; 89(14): 10054-10065, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38946235

RESUMEN

We present a PPh3/DDQ-mediated regiospecific selective N-functionalization of arylhydrazines with primary benzylic alcohols and aryl carboxylic acids for the synthesis of N1-benzyl arylhydrazines and N2-acyl arylhydrazines, respectively. This metal- and base-free approach features very short reaction times (about 10 min), broad substrate scope, good functional group tolerance, and mild reaction conditions. Furthermore, N1-benzlated products have also been successfully applied to the concise synthesis of N-substituted indoles and anticancer drug MDM2 inhibitor.

8.
Small ; : e2402312, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077967

RESUMEN

Reactive oxygen species (ROS)-dependent monotherapy usually demonstrates poor therapeutic outcomes, due to the accompanied activation of protective autophagy in tumor cells, which results in ROS tolerance and immune suppression. In this study, a bimetallic electro-sensitizer, Pt-Ir NPs is constructed, loaded with the autophagy inhibitor chloroquine (Pt-Ir-CQ NPs), to enhance the effectiveness of electrotherapy by inhibiting autophagy and activating anti-tumor immune responses. This novel electrotherapy platform demonstrates unique advantages, particularly in the treatment of hypoxic and immunosuppressive tumors. First, the electro-sensitizer catalyzes water molecules into ROS under electric field, achieving tumor ablation through electrotoxicity. Second, the incorporated CQ inhibits the protective autophagy induced by electrotherapy, restoring the sensitivity of tumor cells to ROS and thereby enhancing the anti-tumor effects of electrotherapy. Third, Pt-Ir-CQ NPs enhance the functionality of antigen-presenting cells and immunogenic cells through inhibiting autophagy, synergistically activating the anti-tumor immune responses along with the immunogenic cell death (ICD) effect induced by electrotherapy. This study provides a novel approach for the effective ablation and long-term inhibition of solid tumors through flexible modulation by an exogenous electric field.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38872241

RESUMEN

STUDY DESIGN: The study included two fresh-frozen cadavers. OBJECTIVE: To elucidate the positional relationship between surgical instruments and nerve roots during full endoscopic facet-sparing (FE fs-TLIF) and facet-resecting (FE fr-TLIF) lumbar interbody fusion and propose safe instrumentation insertion procedures and recommend cage glider designs aimed at protecting nerve roots. SUMMARY OF BACKGROUND DATA: Endoscopic surgical techniques are increasingly used for minimally invasive lumbar fusion surgery with FE fr-TLIF and FE fs-TLIF being common approaches. However, the risk of nerve root injury remains a significant concern during these procedures. METHODS: Eight experienced endoscopic spine surgeons performed uniportal FE fr-TLIF and FE fs-TLIF on cadaveric lumbar spines, totaling 16 surgeries. Post-operation, soft tissues were removed to assess the positional relationship between the cage entry point and nerve roots. Distances between the cage entry point, traversing nerve root, and exiting nerve root were measured. Safe instrumentation design and insertion procedures were determined. RESULTS: In FE fr-TLIF, the mean distance between the cage entry point and traversing nerve root was significantly shorter compared to FE fs-TLIF (3.30±1.35 mm vs. 8.58±2.47 mm, respectively; P<0.0001). Conversely, the mean distance between the cage entry point and the exiting nerve root was significantly shorter in FE fs-TLIF compared to FE fr-TLIF (3.73±1.97 mm vs. 6.90±1.36 mm, respectively; P<0.0001). For FE fr-TLIF, prioritizing the protection of the traversing root using a two-bevel tip cage glider was crucial. In contrast, for FE fs-TLIF, a single-bevel tip cage glider placed in the caudal location was recommended. CONCLUSION: This study elucidates the anatomical relationship between cage entry points and nerve roots in uniportal endoscopic lumbar fusion surgery. Protection strategies should prioritize the traversing root in FE fr-TLIF and the exiting root in FE fs-TLIF, with corresponding variations in surgical techniques. LEVEL OF EVIDENCE: V.

10.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849141

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by high mortality rates primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937 and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of DUSP1 (dual-specificity phosphatase 1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified ATF3 (activating transcription factor 3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the molecular mechanisms driving metastasis in TNBC. Significance Statement We construct a high-throughput phenotypic screening system utilizing EMT marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.

11.
BMC Complement Med Ther ; 24(1): 214, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840248

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) has been found widespread application in neoplasm treatment, yielding promising therapeutic candidates. Previous studies have revealed the anti-cancer properties of Brevilin A, a naturally occurring sesquiterpene lactone derived from Centipeda minima (L.) A.Br. (C. minima), a TCM herb, specifically against lung cancer. However, the underlying mechanisms of its effects remain elusive. This study employs network pharmacology and experimental analyses to unravel the molecular mechanisms of Brevilin A in lung cancer. METHODS: The Batman-TCM, Swiss Target Prediction, Pharmmapper, SuperPred, and BindingDB databases were screened to identify Brevilin A targets. Lung cancer-related targets were sourced from GEO, Genecards, OMIM, TTD, and Drugbank databases. Utilizing Cytoscape software, a protein-protein interaction (PPI) network was established. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), and gene-pathway correlation analysis were conducted using R software. To validate network pharmacology results, molecular docking, molecular dynamics simulations, and in vitro experiments were performed. RESULTS: We identified 599 Brevilin A-associated targets and 3864 lung cancer-related targets, with 155 overlapping genes considered as candidate targets for Brevilin A against lung cancer. The PPI network highlighted STAT3, TNF, HIF1A, PTEN, ESR1, and MTOR as potential therapeutic targets. GO and KEGG analyses revealed 2893 enriched GO terms and 157 enriched KEGG pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. GSEA demonstrated a close association between hub genes and lung cancer. Gene-pathway correlation analysis indicated significant associations between hub genes and the cellular response to hypoxia pathway. Molecular docking and dynamics simulations confirmed Brevilin A's interaction with PTEN and HIF1A, respectively. In vitro experiments demonstrated Brevilin A-induced dose- and time-dependent cell death in A549 cells. Notably, Brevilin A treatment significantly reduced HIF-1α mRNA expression while increasing PTEN mRNA levels. CONCLUSIONS: This study demonstrates that Brevilin A exerts anti-cancer effects in treating lung cancer through a multi-target and multi-pathway manner, with the HIF pathway potentially being involved. These results lay a theoretical foundation for the prospective clinical application of Brevilin A.


Asunto(s)
Neoplasias Pulmonares , Simulación del Acoplamiento Molecular , Sesquiterpenos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/química , Lactonas/farmacología , Lactonas/química , Células A549 , Mapas de Interacción de Proteínas , Farmacología en Red , Crotonatos
12.
Biochem Pharmacol ; 226: 116333, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824966

RESUMEN

Changes in histone acetylation status are associated with gastric cancer (GC) progression. Pomiferin is a natural flavonoid, however, the specific role of pomiferin in the treatment of GC is still unclear, and its targets are not well clarified. In this work, the prognostic genes related with histone acetylation in GC were screened by univariate Cox analysis. Next, a risk model of was constructed using least absolute shrinkage and selection operator-Cox regression analyses, and multivariate Cox analysis was used for identifying the independent risk factor. Molecular docking was performed using AutoDock Vina to validate the interaction between solute carrier family 9 member A9 (SLC9A9) and pomiferin. In vitro and in vivo models were applied to investigate the tumor-suppressive role of pomiferin against GC. The inhibitory effects of pomiferin on EGFR/PI3K/AKT signaling were valdiated by Western blotting, immunofluorescence staining and qPCR. Here, a prognostic risk model based on histone acetylation regulators was established, and SLC9A9 was identified as a risk factor associated with histone acetylation status in GC. SLC9A9 expression was associated with abnormal immune microenvironment of tumor. Pomiferin had a high binding affinity with SLC9A9, and both pomiferin treatment and depletion of SLC9A9 repressed the malignant phenotypes of GC cells. Mechanistically, pomiferin inactivates EGFR/PI3K/AKT signaling in GC cells. In summary, SLC9A9, as a indicator of abnormal histone acetylation status of GC, functions as an oncogenic factor. Pomiferin binds with SLC9A9 to inactivate EGFR/PI3K/AKT pathway, to block GC progression, suggesting it is a promising drug for the patients with highly malignant GC.


Asunto(s)
Histonas , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Acetilación/efectos de los fármacos , Histonas/metabolismo , Animales , Ratones , Línea Celular Tumoral , Masculino , Ratones Desnudos , Femenino , Simulación del Acoplamiento Molecular , Ratones Endogámicos BALB C
13.
J Control Release ; 370: 677-690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740093

RESUMEN

The low oxidation level and immunosuppressive microenvironment within hypoxic tumor tissue are critical factors contributing to the inefficacy of various anti-tumor strategies. Herein, we have designed a novel intravenous injection nanoplatform to conduct electro-immunotherapy, based on phospholipid-modified PtPd nanocrystals loaded with the immunoregulator IPI549 (LP@Pt-Pd@IPI549 nanoparticles, LPPI). LPPI responds to reactive oxygen species (ROS), triggering a cascade of therapeutic effects that overcome hypoxia-related resistance and effectively eradicate hypoxic tumors. Firstly, under electric field exposure, LPPI relied on water rather than oxygen to generate abundant ROS under hypoxic conditions for tumor electrodynamic therapy (EDT). Moreover, the generated ROS further induced the disintegration of the outer phospholipid membrane of LPPI, leading to the release of the immunoregulator and inhibition of myeloid-derived suppressor cells (MDSCs), triggering cascade immune responses. Additionally, the immunomodulatory effects of IPI549, in synergy with the immunogenic cell death (ICD) induced by EDT, reversed the immunosuppressive microenvironment contributing to tumor resistance. In summary, EDT transiently killed tumor cells while simultaneously generating antigen release, instigating an adaptive immune response for electro-immunotherapy, resulting in a potent and long-lasting tumor inhibition effect.


Asunto(s)
Inmunoterapia , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Inmunoterapia/métodos , Línea Celular Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Ratones Endogámicos C57BL , Platino (Metal)/química , Ratones , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Oxígeno/administración & dosificación , Paladio/química , Paladio/administración & dosificación , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Fosfolípidos/química , Fosfolípidos/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química
14.
J Control Release ; 370: 643-652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744344

RESUMEN

Neonatal hypoglycemia is a common disease in newborns, which can precipitate energy shortage and follow by irreversible brain and neurological injury. Herein, we present a novel approach for treating neonatal hypoglycemia involving an adhesive polyvinylpyrrolidone/gallic acid (PVP/GA) film loading glucose. The PVP/GA film with loose cross-linking can be obtained by mixing their ethanol solution and drying complex. When depositing this soft film onto wet tissue, it can absorb interfacial water to form a hydrogel with a rough surface, which facilitates tight contact between the hydrogel and tissue. Meanwhile, the functional groups in the hydrogels and tissues establish both covalent and non-covalent bonds, leading to robust bioadhesion. Moreover, the adhered PVP/GA hydrogel can be detached without damaging tissue as needed. Furthermore, the PVP/GA films exhibit excellent antibacterial properties and biocompatibility. Notably, these films effectively load glucose and deliver it to the sublingual tissue of newborn rabbits, showcasing a compelling therapeutic effect against neonatal hypoglycemia. The strengths of the PVP/GA film encompass excellent wet adhesion in the wet and highly dynamic environment of the oral cavity, on-demand detachment, antibacterial efficacy, biocompatibility, and straightforward preparation. Consequently, this innovative film holds promise for diverse biomedical applications, including but not limited to wearable devices, sealants, and drug delivery systems.


Asunto(s)
Animales Recién Nacidos , Glucosa , Hipoglucemia , Povidona , Animales , Conejos , Glucosa/administración & dosificación , Glucosa/química , Povidona/química , Recién Nacido , Humanos , Hidrogeles/administración & dosificación , Hidrogeles/química , Adhesivos/administración & dosificación , Adhesivos/química , Antibacterianos/administración & dosificación , Sistemas de Liberación de Medicamentos
15.
mSphere ; 9(6): e0002524, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814072

RESUMEN

Hyperuricemia has become the second most prevalent metabolic disease after diabetes, but the limitations of urate-lowering treatment (ULT) drugs and patient nonadherence make ULT far less successful. Thus, more ULT approaches urgently need to be explored. Uric acid-degrading bacteria have potential application value in ULT. In this study, we isolated 44XBT, a uric acid-degrading bacterium, from black-headed gull (Chroicocephalus ridibundus) feces. Using a polyphasic taxonomic approach, strain 44XBT was identified as a novel genus within the family Bacillaceae; subsequently, the name Aciduricibacillus chroicocephali was proposed. Strain 44XBT had a unique uric acid-dependent phenotype and utilized uric acid and allantoin as the sole carbon and nitrogen sources, but not common carbon sources or complex media. In the genome, multiple copies of genes involved in uric acid metabolic pathway (pucL, pucM, uraD, and allB) were found. Six copies of pucL (encoding urate oxidase) were detected. Of these, five pucL copies were in a tandem arrangement and shared 70.42%-99.70% amino acid identity. In vivo experiments revealed that 44XBT reduced serum uric acid levels and attenuated kidney damage in hyperuricemic mice through uric acid catalysis in the gut and gut microbiota remodeling. In conclusion, our findings discover a strain for studying bacterial uric acid metabolism and may provide valuable insights into ULT. IMPORTANCE: The increasing disease burden of hyperuricemia highlights the need for new therapeutic drugs and treatment strategies. Our study describes the developmental and application values of natural uric acid-degrading bacteria found in the gut of birds and broadened the source of bacteria with potential therapeutic value. Furthermore, the special physiology characteristics and genomic features of strain 44XBT are valuable for further study.


Asunto(s)
Heces , Hiperuricemia , Ácido Úrico , Animales , Heces/microbiología , Ácido Úrico/sangre , Ácido Úrico/metabolismo , Ratones , Filogenia , Genoma Bacteriano , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal
16.
Biomed Pharmacother ; 175: 116705, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713949

RESUMEN

Currently, the drugs used in clinical to treat psoriasis mainly broadly suppress cellular immunity. However, these drugs can only provide temporary and partial symptom relief, they do not cure the condition and may lead to recurrence or even serious toxic side effects. In this study, we describe the discovery of a novel potent CDK8 inhibitor as a treatment for psoriasis. Through structure-based design, compound 46 was identified as the most promising candidate, exhibiting a strong inhibitory effect on CDK8 (IC50 value of 57 nM) along with favourable inhibition against NF-κB. Additionally, it demonstrated a positive effect in an in vitro psoriasis model induced by TNF-α. Furthermore, this compound enhanced the thermal stability of CDK8 and exerted evident effects on the biological function of CDK8, and it had favourable selectivity across the CDK family and tyrosine kinase. This compound showed no obvious inhibitory effect on CYP450 enzyme. Further studies confirmed that compound 46 exhibited therapeutic effect on IMQ-induced psoriasis, alleviated the inflammatory response in mice, and enhanced the expression of Foxp3 and IL-10 in the dorsal skin in vivo. This discovery provides a new strategy for developing selective CDK8 inhibitors with anti-inflammatory activity for the treatment of psoriasis.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Inhibidores de Proteínas Quinasas , Psoriasis , Animales , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasa 8 Dependiente de Ciclina/metabolismo , Psoriasis/tratamiento farmacológico , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Ratones , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Piridinas/farmacología , Piridinas/química , Ratones Endogámicos BALB C , Interleucina-10/metabolismo , Masculino , Pirroles/farmacología , Pirroles/química , Factores de Transcripción Forkhead/metabolismo , Descubrimiento de Drogas/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Modelos Animales de Enfermedad , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo
17.
Med Oncol ; 41(6): 155, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744773

RESUMEN

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Asunto(s)
Carcinoma Epitelial de Ovario , Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-6 , MicroARNs , Invasividad Neoplásica , Neoplasias Ováricas , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
18.
Sci Total Environ ; 935: 173303, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761948

RESUMEN

Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.


Asunto(s)
Biomarcadores , Cadmio , Oligoquetos , Contaminantes del Suelo , Sulfametoxazol , Oligoquetos/efectos de los fármacos , Oligoquetos/fisiología , Animales , Sulfametoxazol/toxicidad , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biomarcadores/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
19.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752333

RESUMEN

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Asunto(s)
Biomasa , Ivermectina , Pinus , Animales , Pinus/parasitología , Pinus/química , Ivermectina/análogos & derivados , Ivermectina/farmacología , Ivermectina/química , Ivermectina/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Nematodos/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Nanopartículas/química , Humanos
20.
J Tradit Complement Med ; 14(3): 266-275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707917

RESUMEN

Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA