Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(34): e2207592119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969769

RESUMEN

Vaso-occlusive episode (VOE) is a common and critical complication of sickle cell disease (SCD). Its pathogenesis is incompletely understood. von Willebrand factor (VWF), a multimeric plasma hemostatic protein synthesized and secreted by endothelial cells and platelets, is increased during a VOE. However, whether and how VWF contributes to the pathogenesis of VOE is not fully understood. In this study, we found increased VWF levels during tumor necrosis factor (TNF)-induced VOE in a humanized mouse model of SCD. Deletion of endothelial VWF decreased hemolysis, vascular occlusion, and organ damage caused by TNF-induced VOE in SCD mice. Moreover, administering ADAMTS13, the VWF-cleaving plasma protease, reduced plasma VWF levels, decreased inflammation and vaso-occlusion, and alleviated organ damage during VOE. These data suggest that promoting VWF cleavage via ADAMTS13 may be an effective treatment for reducing hemolysis, inflammation, and vaso-occlusion during VOE.


Asunto(s)
Anemia de Células Falciformes , Enfermedades Vasculares , Factor de von Willebrand , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/farmacología , Proteína ADAMTS13/uso terapéutico , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Eliminación de Gen , Hemólisis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/etiología , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
2.
Methods Mol Biol ; 1846: 325-334, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242770

RESUMEN

Metabolism is pivotal for formation of the lymphatic vasculature. Understanding metabolism in lymphatic endothelial cells (LECs) requires quantitative characterization of specific metabolic pathways. Here we describe methods for using radioactive tracers to assess flux rates of glycolysis, fatty acid ß-oxidation, glucose oxidation, and glutamine oxidation. We also provide a detailed method for utilizing mass spectrometry (MS) to measure glycolytic intermediates and ATP.


Asunto(s)
Células Endoteliales/metabolismo , Metaboloma , Metabolómica , Adenosina Trifosfato/metabolismo , Cromatografía Liquida , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glucólisis , Humanos , Metabolómica/métodos , Oxidación-Reducción , Espectrometría de Masas en Tándem
3.
Bioessays ; 40(6): e1700245, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750374

RESUMEN

Lymphangiogenesis is an important developmental process that is critical to regulation of fluid homeostasis, immune surveillance and response as well as pathogenesis of a number of diseases, among them cancer, inflammation, and heart failure. Specification, formation, and maturation of lymphatic blood vessels involves an interplay between a series of events orchestrated by various transcription factors that determine expression of key genes involved in lymphangiogenesis. These are traditionally thought to be under control of several key growth factors including vascular growth factor-C (VEGF-C) and fibroblast growth factors (FGFs). Recent insights into VEGF and FGF signaling point to their role in control of endothelial metabolic processes such as glycolysis and fatty acid oxidation that, in turn, play a major role in regulation of lymphangiogenesis. These advances have significantly increased our understanding of lymphatic biology and opened new therapeutic vistas. Here we review our current understanding of metabolic controls in the lymphatic vasculature.


Asunto(s)
Células Endoteliales/metabolismo , Linfangiogénesis/fisiología , Animales , Humanos , Vasos Linfáticos/metabolismo , Factores de Transcripción/metabolismo
4.
Nature ; 545(7653): 224-228, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467822

RESUMEN

Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucólisis , Neovascularización Fisiológica , Transducción de Señal , Animales , Movimiento Celular , Proliferación Celular , Femenino , Hexoquinasa/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
5.
Microvasc Res ; 96: 10-5, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25132472

RESUMEN

Lymphatic vessels are intimately involved in the regulation of water and solute homeostasis by returning interstitial fluid back to the venous circulation and play an equally important role in immune responses by providing avenues for immune cell transport. Defects in the lymphatic vasculature result in a number of pathological conditions, including lymphedema and lymphangiectasia. Knowledge of molecular mechanisms underlying lymphatic development and maintenance is therefore critical for understanding, prevention and treatment of lymphatic circulation-related diseases. Research in the past two decades has uncovered several key transcriptional factors (Prox1, Sox18 and Coup-TFII) controlling lymphatic fate specification. Most recently, ERK signaling has emerged as a critical regulator of this transcriptional program. This review summarizes our current understanding of lymphatic fate determination and its transcriptional controls.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Animales , Linaje de la Célula , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Biológicos , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Circulation ; 126(22): 2589-600, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23091063

RESUMEN

BACKGROUND: Arteriogenesis and collateral formation are complex processes requiring integration of multiple inputs to coordinate vessel branching, growth, maturation, and network size. Factors regulating these processes have not been determined. METHODS AND RESULTS: We used an inhibitor of NFκB activation (IκBαSR) under control of an endothelial-specific inducible promoter to selectively suppress endothelial nuclear factor-κB activation during development, in the adult vasculature, or in vitro. Inhibition of nuclear factor-κB activation resulted in formation of an excessively branched arterial network that was composed of immature vessels and provided poor distal tissue perfusion. Molecular analysis demonstrated reduced adhesion molecule expression leading to decreased monocyte influx, reduced hypoxia-inducible factor-1α levels, and a marked decrease in δ-like ligand 4 expression with a consequent decrease in Notch signaling. The latter was the principal cause of increased vascular branching as treatment with Jagged-1 peptide reduced the size of the arterial network to baseline levels. CONCLUSIONS: These findings identify nuclear factor-κB as a key regulator of adult and developmental arteriogenesis and collateral formation. Nuclear factor-κB achieves this by regulating hypoxia-inducible factor-1α-dependent expression of vascular endothelial growth factor-A and platelet-derived growth factor-BB, which are necessary for the development and maturation of the arterial collateral network, and by regulating δ-like ligand 4 expression, which in turn determines the size and complexity of the network.


Asunto(s)
Células Endoteliales/metabolismo , Isquemia/fisiopatología , Subunidad p50 de NF-kappa B/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Animales , Animales Recién Nacidos , Becaplermina , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/metabolismo , Ratones , Ratones Transgénicos , Subunidad p50 de NF-kappa B/genética , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Circ Res ; 106(7): 1221-32, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20185799

RESUMEN

RATIONALE: Wiring vascular and neural networks are known to share common molecular signaling pathways. Activation of transient receptor potential type C channels (TRPCs) has recently been shown to underlie chemotropic guidance of neural axons. It is thus of interest to examine whether TRPCs are also involved in vascular development. OBJECTIVE: To determine the role of TRPC1 in angiogenesis in vivo during zebrafish development. METHODS AND RESULTS: Knockdown of zebrafish trpc1 by antisense morpholino oligonucleotides severely disrupted angiogenic sprouting of intersegmental vessels (ISVs) in zebrafish larvae. This angiogenic defect was prevented by overexpression of a morpholino oligonucleotide-resistant form of zebrafish trpc1 mRNA. Cell transplantation analysis showed that this requirement of Trpc1 for ISV growth was endothelial cell-autonomous. In vivo time-lapse imaging further revealed that the angiogenic defect was attributable to impairment of filopodia extension, migration, and proliferation of ISV tip cells. Furthermore, Trpc1 acted synergistically with vascular endothelial growth factor A (Vegf-a) in controlling ISV growth, and appeared to be downstream to Vegf-a in controlling angiogenesis, as evidence by the findings that Trpc1 was required for Vegf-a-induced ectopic angiogenesis of subintestinal veins and phosphorylation of extracellular signal-regulated kinase. CONCLUSIONS: These results provide the first in vivo evidence that TRPC1 is essential for angiogenesis, reminiscent of the role of TRPCs in axon guidance. It implicates that TRPC1 may represent a potential target for treating pathological angiogenesis.


Asunto(s)
Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Canales Catiónicos TRPC/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/embriología , Movimiento Celular , Proliferación Celular , Células Endoteliales/trasplante , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Microscopía Confocal , Microscopía por Video , Oligonucleótidos Antisentido/metabolismo , Fosforilación , Seudópodos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
8.
Dev Biol ; 339(1): 89-100, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20036229

RESUMEN

Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear. In this work, we cloned the zebrafish homologue of the human SMARCAL1 gene and found that smarcal1 regulated cell cycle progression. Morpholino knockdown of smarcal1 in zebrafish recapitulated developmental abnormalities in SIOD patients, including growth retardation, craniofacial abnormality, and haematopoietic and vascular defects. Lack of smarcal1 caused G0/G1 cell cycle arrest and induced cell apoptosis. Furthermore, using Electrophoretic Mobility Shift Assay and reporter assay, we found that SMARCAL1 was transcriptionally inhibited by E2F6, an important cell cycle regulator. Over-expression of E2F6 in zebrafish embryos reduced the expression of smarcal1 mRNA and induced developmental defects similar to those in smarcal1 morphants. These results suggest that SIOD may be caused by defects in cell cycle regulation. Our study provides a model of SIOD and reveals its cellular and molecular bases.


Asunto(s)
Ciclo Celular , ADN Helicasas/fisiología , Pez Cebra/embriología , Animales , Apoptosis , Secuencia de Bases , Western Blotting , ADN Helicasas/genética , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA