Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167048, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38296117

RESUMEN

Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.


Asunto(s)
Insuficiencia Cardíaca , Antígeno de Macrófago-1 , Humanos , Ratones , Animales , Antígeno de Macrófago-1/metabolismo , Remodelación Ventricular/genética , Transducción de Señal , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/metabolismo , Ratones Noqueados , Macrófagos/metabolismo
2.
J Adv Res ; 55: 17-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36822392

RESUMEN

INTRODUCTION: Leukocyte infiltration is an early event during cardiac remodeling frequently leading to heart failure (HF). Integrins mediate leukocyte infiltration during inflammation. However, the importance of specific integrins in hypertensive cardiac remodeling is still unclear. OBJECTIVES: To elucidate the significance of CD11b in hypertensive cardiac remodeling. METHODS: Angiotensin (Ang II) or deoxycorticosterone acetate (DOCA)-salt was used to induce cardiac remodeling in mice of gene knockout (KO), bone marrow (BM) chimera, and the CD11b neutralizing antibody or agonist leukadherin-1 (LA1) treatment. RESULTS: Our microarray data showed that integrin subunits Itgam (CD11b) and Itgb2 (CD18) were the most highly upregulated in Ang II-infused hearts. CD11b expression and CD11b/CD18+ myelomonocytes were also time-dependently increased. KO or pharmacological blockade of CD11b greatly attenuated cardiac remodeling and macrophage infiltration and M1 polarization induced by Ang II or DOCA-salt. This protection was verified in wild-type mice transplanted with CD11b-deficient BM cells. Conversely, administration of CD11b agonist LA1 showed the opposite effects. Further, CD11b KO reduced Ang II-induced macrophage adhesion and M1 polarization, leading to reduction of cardiomyocyte enlargement and fibroblast differentiation in vitro. The numbers of CD14+CD11b+CD18+ monocytes and CD15+CD11b+CD18+ granulocytes were obviously higher in HF patients than in normal controls. CONCLUSION: Our data demonstrate an important role of CD11b+ myeloid cells in hypertensive cardiac remodeling, and suggest that HF may benefit from targeting CD11b.


Asunto(s)
Acetato de Desoxicorticosterona , Insuficiencia Cardíaca , Hipertensión , Humanos , Animales , Ratones , Remodelación Ventricular/fisiología , Acetato de Desoxicorticosterona/efectos adversos , Macrófagos/metabolismo , Hipertensión/metabolismo , Integrinas
3.
Leukemia ; 38(1): 168-180, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049509

RESUMEN

Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.


Asunto(s)
COVID-19 , Mieloma Múltiple , Humanos , Vacunas contra la COVID-19 , Citocinas , Leucocitos Mononucleares , Mieloma Múltiple/terapia , SARS-CoV-2 , Vacunación
4.
Front Pharmacol ; 13: 1018480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386197

RESUMEN

Elderly male patients are susceptible to develop osteoporosis and sarcopenia, especially those with fragility fractures, hypogonadism, and prostate cancer with androgen deprivation therapy. However, at present, very few treatments are available for men with sarcopenia. Previous preclinical studies in ovariectomized rats have shown the promising effects of eldecalcitol in ameliorating the bone strength and muscle atrophy. We thus investigated the effects of eldecalcitol on androgen-deficient male mice. Six-week-old male mice underwent orchiectomy (ORX) or sham surgery. Mice were randomly divided into 4 groups (n = 12/per group), including 1) sham mice, 2) ORX group, 3) ORX eldecalcitol 30 ng/kg, and 4) ORX eldecalcitol 50 ng/kg. Eldecalcitol increased bone mass and strength of femur in ORX mice. Eldecalcitol 30 ng/kg dose completely rescued ORX-induced muscle weakness. The RT-qPCR showed that eldecalcitol enhanced the mRNA levels of type I and IIa fibers. The expression levels of MuRF1 and Atrogin-1 of gastrocnemius in the eldecalcitol groups were much lower than that of the ORX group. It is assumed that eldecalcitol potentially acts via PI3K/AKT/FOXOs signaling pathway. These findings provide evidence for evaluating eldecalcitol as an investigational treatment for male patients with sarcopenia and osteoporosis.

5.
Methods Cell Biol ; 171: 173-195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953200

RESUMEN

Flow cytometry is a powerful technology that allows not only multiparameter quantitative data analysis at single cell resolution but also simultaneous cell separation of different populations of interest at high speed. It has been rapidly employed in biological research and clinical diagnostics. This technology has enabled the thorough understanding of murine hematopoiesis, especially the physiology of surface marker-defined hematopoietic stem and progenitor cell populations. The isolation of these populations has been well established over the last three decades with a large consensus among leading laboratories. Here, we describe a detailed methodology protocol of two different state-of-the-art approaches to isolate bone marrow cells and purify hematopoietic stem and progenitor cells via flow cytometry. Different gating schemes are introduced to identify well-defined populations of murine hematopoietic stem and multipotent progenitor cells.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea , Separación Celular , Citometría de Flujo/métodos , Ratones
6.
J Bone Miner Metab ; 40(6): 951-959, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35939235

RESUMEN

INTRODUCTION: Hip fracture is one of the leading causes of death and disability in the elderly. We analyzed the risk factors of mortality and second fracture within 2 years after hip fracture surgery in elderly Chinese patients. MATERIALS AND METHODS: A total of 613 elderly patients after hip fracture surgery were selected, including 181 males and 432 females, and the patients were followed for at least 24 months. Information about patients and surgery was collected from medical records. Information on death, secondary fracture, and postoperative activities of daily living (ADL) was obtained by telephone follow-up. Cox regression was performed to identify risk factors associated with mortality and second fracture, measured by hazard ratio (HR). RESULTS: The 1-year and 2-year mortality rates after hip fracture were 13.4% and 20.7%, respectively. The second fracture rate within 2 years was 9.5%. Male gender (HR 1.51, P = 0.035), increased age (HR 1.07, P < 0.001), preoperative hypoalbuminemia (HR 1.79, P = 0.004), preoperative pneumonia (HR 2.60, P = 0.005) and poor ADL (P = 0.048) were independent risk factors for 2-year mortality, while high preoperative hemoglobin (HR 0.98, P = 0.002), high preoperative eGFR (HR 0.99, P = 0.031), high preoperative LVEF (HR 0.92, P = 0.048) were protective factors for 2-year mortality. Poor ADL (P = 0.002) was the independent risk factor for second fracture within 2 years. CONCLUSIONS: The 2-year mortality rate and second fracture rate after hip fracture in elderly remained high, which was related to old age and complications exists. Postoperative rehabilitation and improving ADL were very important to reduce mortality and second fracture.


Asunto(s)
Actividades Cotidianas , Fracturas de Cadera , Femenino , Humanos , Masculino , Anciano , China/epidemiología , Fracturas de Cadera/cirugía , Factores de Riesgo , Periodo Posoperatorio , Estudios Retrospectivos
7.
Oncogene ; 40(25): 4352-4367, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34103685

RESUMEN

Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein-protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.


Asunto(s)
Carcinogénesis/genética , Neoplasias del Colon/genética , Proteína Glutamina Gamma Glutamiltransferasa 2/genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Caspasa 3/genética , Línea Celular Tumoral , Proliferación Celular/genética , Colon/patología , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mapas de Interacción de Proteínas/genética , Transcriptoma/genética
8.
Int J Nanomedicine ; 16: 3275-3292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007177

RESUMEN

PURPOSE: Neuropathic pain causes great distress among patients; however, its response to traditional analgesia techniques remains sub-optimal. There has been progress in stem cell research for neuropathic pain treatment; however, effective homing remains problematic. This study aimed to establish Fe3O4@polydopamine(PDA)-labeled mesenchymal stem cells (MSCs); moreover, we aimed to guide MSCs using a magnetic field to the spinal cord segments showing pain-related responses to allow MSC homing and gathering, in advance, in order to fully employ their repair function. MATERIALS AND METHODS: Fe3O4@PDA-labeled MSCs were characterized using transmission electron microscopy. We analyzed the characteristics of MSCs, as well as the nanoparticle effects on MSC activity, differentiation, and proliferation, using the CCK-8 method, flow cytometry, and staining. Using rats, we performed behavioral tests of mechanical and thermal pain hypersensitivity. Serum inflammatory markers were detected using ELISA. Finally, changes in proteins associated with spinal cord pain were detected through quantitative reverse transcription PCR, histology, and immunohistochemistry. RESULTS: Fe3O4@PDA did not affect the characteristics and viability of MSCs. The magnetic field guidance improved the therapeutic effect of Fe3O4@PDA-labeled MSCs as indicated by the paw withdrawal threshold. Fe3O4@PDA-labeled MSCs decreased spinal nerve demyelination and c-Fos expression (a pain molecule); moreover, they inhibited microglia and astrocyte activation. CONCLUSION: Fe3O4@PDA-labeled MSCs showed better homing to the spinal cord under magnetic field guidance. Moreover, they inhibited microglial and astrocyte activation, as well as played an early and continuous role in neuropathic pain treatment.


Asunto(s)
Portadores de Fármacos/química , Compuestos Férricos/química , Indoles/química , Campos Magnéticos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Neuralgia/terapia , Polímeros/química , Animales , Diferenciación Celular , Masculino , Trasplante de Células Madre Mesenquimatosas , Microglía/patología , Nanopartículas/química , Neuralgia/patología , Ratas , Médula Espinal/patología
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875597

RESUMEN

G protein-coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including Gq- and Gi-mediated signaling or ß-arrestin recruitment. GPR182 showed relatively high constitutive activity in regard to ß-arrestin recruitment and rapidly internalized in a ligand-independent manner. In constitutive GPR182-deficient mice, as well as after induced endothelium-specific loss of GPR182, we found significant increases in the plasma levels of CXCL10, CXCL12, and CXCL13. Global and induced endothelium-specific GPR182-deficient mice showed a significant decrease in hematopoietic stem cells in the bone marrow as well as increased colony-forming units of hematopoietic progenitors in the blood and the spleen. Our data show that GPR182 is a new atypical chemokine receptor for CXCL10, CXCL12, and CXCL13, which is involved in the regulation of hematopoietic stem cell homeostasis.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Quimiocina CXCL10 , Quimiocina CXCL12 , Quimiocina CXCL13 , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Femenino , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/fisiología , beta-Arrestinas/metabolismo
10.
Exp Cell Res ; 402(1): 112566, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33745927

RESUMEN

As epigenetic regulators are frequently dysregulated in acute myeloid leukemia (AML) we determined expression levels of the JmjC-protein NO66 in AML cell lines and sub fractions of healthy human hematopoietic cells. NO66 is absent in the AML cell lines KG1/KG1a which consist of cells with the immature CD34+/CD38- phenotype and is regarded as a "stem cell-like" model system. Similarly, NO66 is not detectable in CD34+/CD38- cells purified from healthy donors but is clearly expressed in the more committed CD34+/CD38+ cell population. Loss of NO66 expression in KG1/KG1a cells is due to hyper-methylation of its promoter and is released by DNA-methyltransferase inhibitors. In KG1a cells stably expressing exogenous wild type (KG1a66wt) or enzymatically inactive mutant (KG1a66mut) NO66, respectively, the wild type protein inhibited proliferation and rDNA transcription. Gene expression profiling revealed that the expression of NO66 induces a transcriptional program enriched for genes with roles in proliferation and maturation (e.g.EPDR1, FCER1A, CD247, MYCN, SNORD13). Genes important for the maintenance of stem cell properties are downregulated (e.g. SIRPA, Lin28B, JAML). Our results indicate that NO66 induces lineage commitment towards myeloid progenitor cell fate and suggest that NO66 contributes to loss of stem cell properties.


Asunto(s)
Proliferación Celular/genética , Dioxigenasas/genética , Histona Demetilasas/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Dominios Proteicos/genética
11.
J Bone Miner Metab ; 35(3): 298-307, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27085966

RESUMEN

Tumor-induced osteomalacia (TIO) is a rare acquired form of hypophosphatemic osteomalacia, which is usually attributed to the overproduction of fibroblast growth factor 23 (FGF-23) by benign mesenchymal neoplasms. Localization and thereafter surgical resection of tumors lead to a cure. The present study aimed to investigate the clinical data, diagnostic methods, and follow-up after tumor resection at one medical center in Shanghai to characterize the profile of this rare disorder and to share our successful experience in diagnosis and treatment. Twenty-three patients with adult-onset hypophosphatemia osteomalacia seen in Shanghai Sixth People's Hospital from 2009 to 2014 and 95 normal individuals were enrolled. After taking a medical history and performing a physical examination, we analyzed the laboratory results (including the serum FGF-23 levels) and localized the tumors by 18F-fluorodeoxyglucose positron emission tomography and computed tomography (18F-FDG PET/CT), 99mTc-octreotide (99mTc-OCT) scintigraphy, and magnetic resonance imaging (MRI). On the basis of the results of laboratory tests and imaging findings, tumor resection was conducted in 17 patients with a certain diagnosis of TIO. The results demonstrated that the 17 patients (nine men and eight women, average age 46.6 ± 12.9 years) had TIO. FGF-23 level was elevated in 94.1 % of patients (16 of 17 patients) . Serum phosphorus level decreased in 100 % of patients. 18F-FDG PET/CT revealed five tumors, 99mTc-OCT scintigraphy revealed two tumors, physical examination revealed nine tumors, and MRI revealed one tumor, among which 58.8 % of the causative tumors (10 of 17 tumors) were located in the lower extremities. After tumor resection, serum phosphorus levels normalized in 100 % of patients (all 17 patients) in 4-21 days and FGF-23 levels decreased in 90 % of patients (nine of ten patients). We found 64.7 % of the tumors (11 of 17 tumors) were phosphaturic mesenchymal tumors or a phosphaturic mesenchymal tumor mixed connective tissue variant. Measurement of serum phosphorus and FGF-23 levels in patients with suspected TIO is of paramount importance for diagnosing of TIO. 18F-FDG PET/CT, 99mTc-OCT scintigraphy, and physical examination play a considerable role in revealing TIO-associated tumors. TIO-associated tumors were more frequently located in the lower extremities than in other places; thus, the lower extremities need to be carefully checked. Complete surgical resection results in normalization of parameters in laboratory tests and relief of symptoms of TIO patients.


Asunto(s)
Pueblo Asiatico/genética , Neoplasias de Tejido Conjuntivo/patología , Adulto , Anciano , Fosfatasa Alcalina/sangre , China , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neoplasias de Tejido Conjuntivo/sangre , Neoplasias de Tejido Conjuntivo/diagnóstico por imagen , Neoplasias de Tejido Conjuntivo/cirugía , Octreótido/análogos & derivados , Octreótido/química , Compuestos de Organotecnecio/química , Osteomalacia , Síndromes Paraneoplásicos , Fósforo/sangre , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto Joven
12.
Mol Med Rep ; 14(3): 2180-6, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27432013

RESUMEN

Pseudoachondroplasia (PSACH; MIM no. 177170) is an autosomal dominant osteochondrodysplasia characterized by short­limb short stature, brachydactyly and early­onset osteoarthropathy. Typically, at approximately two years of age, the rate of growth falls below the standard growth curve, causing a moderately severe form of disproportionate short­limb short stature. The current study described the clinical and radiographic observations of six Chinese patients with PSACH, and identified two de novo novel missense mutations [p.Asp326Asn (c.976G>A) and c.1585A>G (p.Thr529Ala)] in cartilage oligomeric matrix protein (COMP) in the patients. The current study expanded the mutation spectrum of the COMP gene, and contributes to the understanding of phenotype/genotype of COMP­associated diseases.


Asunto(s)
Acondroplasia/diagnóstico , Acondroplasia/genética , Proteína de la Matriz Oligomérica del Cartílago/genética , Mutación , Adolescente , Secuencia de Aminoácidos , Huesos/diagnóstico por imagen , Huesos/patología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Linaje , Fenotipo , Radiografía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA