Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Pharm ; 644: 123300, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37567370

RESUMEN

To emphasize the superiority of uracil (UR) in ameliorating biopharmaceutical characteristics of marine antitumor medicine cytarabine (ARA), thus gaining some innovative opinions for the exploitation of nanococrystal formulation, a cocrystal nanonization strategy is proposed by integrating cocrystallization and nanosize preparation techniques. For one thing, based on UR's unique structural features and natures together with advantages of preferential uptake by tumor cells, cocrystallizing ARA with UR is expected to improve the in vitro/vivo performances. For another, the nanonization procedure is oriented towards maintaining the long-term effective drug level. Along this route, a cocrystal of ARA with UR, viz., ARA-UR, is successfully synthesized and then transformed into nano-cocrystal. The cocrystal structure is precisely confirmed by various methods, demonstrating that a 1:1 ARA and UR in the crystal forms cytosine-UR hydrogen-bonding interactions, thus constructing supramolecular frameworks by strong π-π stacking interplays; while the nano-cocrystal is block-shaped particles of 562.70 nm with zeta potential -33.40 mV. The properties of cocrystal ARA-UR and its nano-cocrystal in vitro/vivo are comparatively explored by theoretical calculations and experimental analyses, revealing that permeability of both is significantly increased than ARA per se. Notably, the meliorative natures of both the cocrystal and nano-cocrystal in vitro bring excellent antitumor activity, but the latter has greater strengths over the former. More notably, the nano-cocrystal can sustain effective concentration for a relatively longer time, causing lengthened retention time and better absorption in vivo. The contribution offers a fire-new dosage form of ARA for long-lasting delivery, thus filling the vacancy in nanococrystal studies about marine drugs.


Asunto(s)
Antineoplásicos , Citarabina , Preparaciones Farmacéuticas , Antineoplásicos/farmacología
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(5): 757-762, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36325770

RESUMEN

Objective To investigate the feasibility of home hospice care based on the practical experience in Puhuangyu community of Beijing.Methods We selected the patients assessed by hospice care team and receiving home hospice care from Puhuangyu Community Health Service Center of Beijing from January 1,2020 to December 31,2021.The clinical manifestations,hospice services received,and place of death of the patients were analyzed. Results A total of 24 patients were included in this study.They mainly suffered from malignant tumors(18 patients,75.0%),with pain as the most common symptom(12 patients,50.0%).The patients received a variety of hospice services through a combination of outpatient visits,home visits,and WeChat follow-up.The service time of each patient was(2.8±1.7) h each week on average and 57.9%(11/19) of the patients passed away at home. Conclusions The home hospice care in Puhuangyu community has a stable source of patients.The members of this hospice team can provide a variety of home hospice services.With this model,the wish to pass away at home can be achievable for most patients.Therefore,this model of community-based home hospice care is feasible.


Asunto(s)
Servicios de Atención de Salud a Domicilio , Cuidados Paliativos al Final de la Vida , Hospitales para Enfermos Terminales , Humanos , Beijing
3.
Int J Pharm ; 629: 122386, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372139

RESUMEN

In order to highlight the advantages of cocrystallization technique in perfecting in vitro/vivo natures of marine drug cytarabine (ARC), and fill the gap of the research of marine pharmaceutical cocrystals with synergistic antitumor effects, the first dual-drug cocrystal simultaneously containing ARC and antitumor drug 5-fluorouracil (FU), viz. ARC-FU, is successfully designed and assembled. The accurate structure is perfectly resolved by single-crystal X-ray diffraction and other approaches. The analytical outcomes demonstrate that the codrug cocrystal consists of ARC and FU with a molar ratio of 1:1, in which FU molecule plays an important role by participating in the formation of both "pyrimidine-pyrimidine" and "pyrimidine-sugar" cyclic hydrogen-bonding systems with ARC molecules. In the cocrystal, there are twofold hydrogen-bonding helixes of ARC molecules and a whole three-dimensional hydrogen-bonding network which also contains the aromatic stacking interaction between pyrimidine rings of both components. Such structural feature and aggregation model have crucial influences on the improvements of in vitro/vivo properties, which is methodically verified by the combination of theoretical analyses and experimental measurements. The in vitro studies exhibit the suitably reduced solubility and obviously increased permeability for the cocrystal that is in accord with the theoretical prediction. Importantly, the ameliorated in vitro peculiarities realize in vivo pharmacokinetic optimization including the extended residence time and enhanced relative bioavailability. Of greater significance, ARC exerts synergistic antitumor effects in association with FU that brings about potentiation of cell growth inhibition with lower IC50. Thus, this research not only provides a novel crystalline form for ARC with forward-looking development value, but also breaks new ground for the development of synergistic antitumor pharmaceutical cocrystals with marine characteristics.


Asunto(s)
Productos Biológicos , Fluorouracilo , Preparaciones Farmacéuticas/química , Fluorouracilo/farmacología , Fluorouracilo/química , Citarabina/farmacología , Cristalización , Solubilidad , Administración Oral , Hidrógeno
4.
Environ Toxicol ; 37(11): 2673-2682, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35962723

RESUMEN

PURPOSE: This work was to identify the function and mechanism of miR-219a-5p in regulating knee osteoarthritis (KOA). METHODS: Rat fibroblast-like synoviocytes (FLSs) were isolated to construct KOA cell model by lipopolysaccharide and adenosine triphosphate treatment. miR-219a-5p and FBXO3 expression in FLSs was modulated by transfection. Flow cytometry was executed to research FLSs apoptosis. Caspase-1 and IL-1ß expression in FLSs was researched by immunofluorescence. The binding between miR-219a-5p and FBXO3 was identified by dual luciferase reporter gene assay. KOA rat model and miR-219a-5p up-modulation KOA rat model were constructed. Step size of rats was analyzed. Knee joints of rats were experienced Safranin O-fast green staining to evaluate the knee joint injury. FBXO3, pyroptosis-associated proteins, and IL-1ß and IL-18 expression in FLSs and articular cartilage tissues of rats were assessed by Western blot, qRT-PCR and Enzyme-linked immunosorbent assay. RESULTS: KOA cell model had higher apoptosis percentage, expression of pyroptosis-associated proteins, and IL-1ß and IL-18 level. miR-219a-5p up-modulation decreased the above indicators, whereas miR-219a-5p down-modulation increased the above indicators. FBXO3 expression was directly repressed by miR-219a-5p. Loss of FBXO3 suppressed the above indicators. FBXO3 counteracted the suppression of miR-219a-5p on the above indicators. miR-219a-5p agomir attenuated knee joint injury, increased step size of KOA rats, and reduced FBXO3, pyroptosis-associated proteins and level of IL-1ß and IL-18 in the articular cartilage tissues of KOA rats. CONCLUSION: miR-219a-5p suppressed the pyroptosis in KOA by inactivating the NLRP3 signaling via targeting FBXO3, which might be a promising target for ameliorating KOA in the clinic.


Asunto(s)
MicroARNs , Osteoartritis de la Rodilla , Adenosina Trifosfato , Animales , Caspasa 1 , Proteínas F-Box , Interleucina-18 , Lipopolisacáridos , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Piroptosis , Ratas
5.
FASEB J ; 36(4): e22231, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35230719

RESUMEN

The dysfunction of osteogenesis is a key character in the pathogenesis of osteoporosis, but the network of signaling mechanisms in controlling the differentiation of osteoblast remain unclear. Thrap3 has been proved participating in various biological process, especially in the differentiation of stem cells. Here, we demonstrate that Thrap3 could promote osteogenesis through the inhibition of the degradation of Runx2, which is a key molecular structure in early osteoblast differentiation. Furthermore, we found that the osteogenesis enhancing capacity of Thrap3 was caused by physically binding with Sox9, inhibiting the transcriptional activity of Sox9, and then decreasing the decomposition-promoted effect of Sox9 on Runx2. Our data shows that Thrap3 promotes osteoblast differentiation through the Thrap3-Sox9-Runx2 axis. What we found may help for further clarifying the molecular mechanism of osteogenic differentiation and give a new potential therapeutic target for osteoporosis.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Proteínas de Unión al ADN/fisiología , Osteogénesis/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Factor de Transcripción SOX9/fisiología
6.
Int J Pharm ; 617: 121635, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35257803

RESUMEN

To fully play the advantages of cocrystallization and nano-preparation techniques in regulating in vitro/vivo biopharmaceutical properties of anticancer drug 5-fluorouracil (FU), and further exploit new avenues in its formulation development, a recombination strategy of cocrystallization and nano-micellar self-assembly techniques is proposed. Thereinto, the cocrystallization technique is aiming at augmenting antitumor ability by ameliorating physicochemical performances of FU, while the nano-micellar self-assembly technique is mainly employed to achieve slowed release and long-term efficacy. Guided by this strategy, a new zwitterionic cocrystal of FU with L-proline (PL), FU-PL, is successfully synthesized, and then incorporated into carriers PEG-PCL to gain cocrystal micelles. The structure of FU-PL cocrystal and morphology of the cocrystal micelles are respectively characterized via various analytical means. The comparative studies of in vivo/vitro properties are systematacially conducted by theoretical and experimental methods. The results showcase that the cocrystal's solubility and permeability are 4.60 and 3.89 folds higher than those of pristine drug FU at pH 6.8, separately; and the drug loading and entrapment efficiency of the obtained cocrystal micelles with spherical particles of 146 nm are 2.39 and 1.74 times than those of FU micelles itself, respectively. Particularly, both the cocrystal and its micelles eventually bring about the excellent antitumor activity, but the cocrystal micelles improve even more significantly in comparison with the cocrystal. These in vitro advantages have promoted the in vivo absorption with increased relative bioavailability (FREL) of 2.72 relative to FU-PL cocrystal. More particularly, the cocrystal micelles have preferable sustained-release action relative to FU micelles, thus more efficaciously prolonging the half-life and therapy duration. All these findings not only supply a novice slow-release dosage form for FU with greater efficiency, but also fill the blank of the micelle researches for antitumor pharmaceutical cocrystals.


Asunto(s)
Productos Biológicos , Fluorouracilo , Portadores de Fármacos/química , Micelas , Prolina , Solubilidad
7.
Nanomedicine (Lond) ; 17(30): 2215-2229, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36927097

RESUMEN

Aim: To explore how to transform cocrystals of the anticancer drug 5-fluorouracil (FL) with caffeic acid (CF; FL-CF-2H2O) into a nanoformulation, a self-assembly strategy of cocrystal-loaded micelles is proposed. Methods: Nanomicelles were assembled to deliver cocrystal FL-CF-2H2O with synergistic activity, and their in vitro/vivo properties were evaluated by combining theoretical and experimental methods. Result: More cocrystal was packed into the polymers due to the stronger interaction energy during micellar assembly, producing excellent cytotoxicity and pharmacokinetic behavior, especially synergistic abilities and long-term therapy. Conclusion: This case exemplifies the particular benefits of the self-assembly strategy of cocrystal-loaded micelles in keeping a delicate balance between long-term effects and high efficiency for FL, and offers a feasible technical scheme for cocrystal delivery agents for antitumor drugs.


To exemplify the feasibility of the cocrystal conversion of anticancer drug 5-fluorouracil (FL) with phenolic acid nutrient caffeic acid (CF) into a nanomicelle formulation, and further provide new options for the development of slowed-release cocrystal formulations with long-acting and synergistic antitumor effects, in this study, a cocrystalline complex of FL and CF (cocrystal FL-CF-2H2O) was loaded into polymer PEG-PCL to successfully assemble the cocrystal nanomicelles by a self-assembly strategy. The morphology of the cocrystal nanomicelles was characterized, and in vitro/vivo properties were evaluated by combining theoretical with experimental methods. The results showed that the cocrystal nanomicelles with regular sphericity and homogeneous particle size had greater drug loading and entrapment efficiency than FL nanomicelles, which is also supported by theoretical predictions of the interaction energy between the cocrystal FL-CF-2H2O and polymer PEG-PCL. The excellent encapsulation effects give rise to more potent cytotoxicity, better absorption and prolonged retention time in vivo. Relative to FL nanomicelles, the present cocrystal nanomicelles with synergistic antitumor abilities exhibited prominent slowed-release behavior that was more conducive to the long-term maintenance of therapeutic concentrations in vivo. The present case offers a feasible technical scheme for successful nanoformulation research on synergistic antitumor pharmaceutical cocrystals.


Asunto(s)
Antineoplásicos , Micelas , Fluorouracilo/farmacología , Polímeros/química , Antineoplásicos/farmacología , Portadores de Fármacos
8.
Arch Physiol Biochem ; 128(5): 1297-1301, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32552067

RESUMEN

Normal ratio of type I collagen α1 to α2 (2:1) maintains normal bone microarchitecture. Altered ratios lead to formation of collagen homotrimers and deteriorated bone microarchitecture. In this study, we aimed to investigate the role of lncRNA AWPPH in osteoporosis. We observed that the expression of lncRNA AWPPH was downregulated in osteoporosis patients than that in healthy controls. Downregulated expression of lncRNA AWPPH distinguished osteoporosis patients from healthy controls. In vitro cell experiments showed that knockdown of lncRNA AWPPH led to upregulated α1 but downregulated expression of α2 in osteoblasts, which made the α1 to α2 ratio higher than 2:1. In contrast, overexpression of lncRNA AWPPH led to downregulated α1 but upregulated α2 in osteoblasts, which made the α1 to α2 ratio lower than 2:1. Therefore, lncRNA AWPPH is downregulated in osteoporosis and altered the expression of lncRNA AWPPH regulates type I collagen α1 and α2 ratio in osteoblasts.


Asunto(s)
Osteoporosis , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Humanos , Osteoporosis/genética , ARN Largo no Codificante/genética
9.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638269

RESUMEN

Cervical cancer (CC) is one of the most common gynecological malignancies in females, mainly caused by human papillomavirus (HPV). In countries with lower HPV vaccine coverage, such as Japan, medical examination may play a key role in decreasing CC incidence. This study aimed to quantify the effect of medical examination on cervical cancer (CC) incidence in Japan, considering the effects of possible risk factors. By collecting Japan's Prefectural data on CC incidence (2013-2017), incidence of sexually transmitted diseases (STDs; Chlamydia, Herpes, Condyloma, and Gonorrhea; 1993-2012), screening and detailed examination rate against CC (2013-2016), smoking rate (2001-2013), economic status (disposable income and economic surplus; 2014-2015), and education status (2015), we analyzed associations among them using Pearson's correlation coefficients. Additionally, assuming that the incidence of STDs reflects the frequency of risky sexual behavior at the co-infection point with HPV, we constructed generalized linear models to predict CC incidence, taking a 5-20-year time-lag between incidences of STDs and the CC incidence. Against CC incidence, Chlamydia in females and Gonorrhea in males with a 15-year time-lag showed positive associations, while Condyloma in both genders with a 15-year time-lag, screening rate, economic status, and smoking rate showed negative associations. An increase in screening test rate by 10% was estimated to decrease CC incidence by 9.6%. This means that screening tests decrease CC incidence effectively, but not drastically, suggesting the need for additional countermeasures for CC prevention.

10.
Rev Assoc Med Bras (1992) ; 67(4): 555-560, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34495060

RESUMEN

OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3ß, and ß-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Proliferación Celular , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta , Células Endoteliales de la Vena Umbilical Humana , Humanos
11.
Analyst ; 146(8): 2506-2519, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33899060

RESUMEN

For highlighting the predominance of phenolic acid nutraceutical ferulic acid (FR) in regulating the in vivo/vitro performances of anticancer drug 5-fluorouracil (Flu) and strengthening their cooperativity in antitumor effect, thus achieving a major breakthrough in the development of drug-nutraceutical cocrystal with synergistic antitumor action, a cocrystallization strategy of dual optimization is created, in which both the in vivo and vitro natures of Flu are improved by exploiting the FR's excellent physicochemical property. Moreover, Flu's anticancer effects were promoted by exerting the assistant antitumor peculiarity of FR. Such dual optimization of FR for Flu in physicochemical properties and anticancer activities is beneficial for realizing synergistic augmentation effect by taking the benefit of the cooperativeness of Flu and FR in the anticancer ability. Based on this idea, a novel cocrystal of Flu and FR, namely, Flu-FR-H2O, is successfully assembled as the first 5-fluorouracil-nutraceutical cocrystal with synergistic antitumor effect and its explicit structure is resolved. The single-crystal X-ray diffraction demonstrates that Flu and FR have a ratio of 1 : 1 with one equivalent of solvent water in the cocrystal, where one-dimensional hydrogen-bonding helices and FR-Flu hydrogen-bonding pairs, together construct a three-dimensional supramolecular network. By combining experimental evaluation with theoretical analysis, in vitro/vivo pharmaceutical properties are scientifically investigated. Results show that the permeability and aqueous solubility of Flu are respectively elevated by 5.08 and 1.64 folds, which has brought about ameliorated pharmacokinetics, thus providing prolonged retention time and increased oral bioavailability. More interestingly, the cocrystal shows synergistic inhibition ability of Flu and FR against tested tumor cell strains, hence laying the groundwork for reducing the dosage and even the toxic side effects of Flu. As a result of this, the present research not only provides a new strategy for Flu to optimize its physicochemical properties and antitumor activities simultaneously but also offers some opinions for the development of synergistic antitumor pharmaceutical cocrystals.


Asunto(s)
Suplementos Dietéticos , Fluorouracilo , Ácidos Cumáricos , Cristalización , Fluorouracilo/farmacología , Hidroxibenzoatos , Solubilidad
12.
Rev. Assoc. Med. Bras. (1992) ; 67(4): 555-560, Apr. 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1340629

RESUMEN

SUMMARY OBJECTIVE: In this study, we aimed at investigating the role of isoleucyl-tRNA synthetase in the growth, migration, and angiogenesis of human umbilical vein endothelial cells and the underlying molecular mechanism. METHODS: To assess the role of isoleucyl-tRNA synthetase, we silenced isoleucyl-tRNA synthetase in human umbilical vein endothelial cells using lentiviral 2 specific short hairpin RNAs (short hairpin RNAs 1 and 2) and examined silencing efficiency using real time quantitative polymerase chain reaction and western blot analyses. Short hairpin RNAs 1-isoleucyl-tRNA synthetase had greater knockdown efficiency, it was used in the entire downstream analysis. Short hairpin RNAs 1- isoleucyl-tRNA synthetase silencing effects on cell proliferation, cell colony generation, cell migration, as well as angiogenesis were assessed using cell counting kit-8, colony development, cell migration, and angiogenesis tube formation assays, respectively. RESULTS: Compared to the control group, anti-isoleucyl-tRNA synthetase short hairpin RNAs significantly silenced isoleucyl-tRNA synthetase expression in human umbilical vein endothelial cells, and suppressed their proliferation, migration, and angiogenic capacity. To characterize the underlying mechanism, western blot analyses showed that isoleucyl-tRNA synthetase knockdown suppressed phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. CONCLUSIONS: We have shown, for the first time, the critical role of isoleucyl-tRNA synthetase in human umbilical vein endothelial cells. Our data show that isoleucyl-tRNA synthetase knockdown suppresses human umbilical vein endothelial cell proliferation, migration, and angiogenesis. We have also shown that isoleucyl-tRNA synthetase knockdown suppresses phosphorylation of extracellular-regulated kinase ½ and protein-serine- threonine kinase, as well as expression of vascular endothelial growth factor, GSK-3β, and β-catenin. Together, these data highlight isoleucyl-tRNA synthetase as a potential antitumor anti-angiogenic target.


Asunto(s)
Humanos , Factor A de Crecimiento Endotelial Vascular , Células Cultivadas , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Glucógeno Sintasa Quinasa 3 beta
13.
Biochimie ; 174: 74-83, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32304771

RESUMEN

EDA2R is a member of the large family of tumor necrosis factor receptor (TNFR). Previous studies suggested that EDA2R expression might be increased in the kidneys of diabetic mice. However, its mRNA and protein expression in kidneys were not analyzed; moreover, its role in the development of diabetic kidney disease was not explored. Here we analyzed the mRNA and protein expressions of EDA2R in diabetic kidneys and examined its role in the podocyte injury in high glucose milieu. By analysis with real-time PCR, Western blotting, we found that both the mRNA and protein levels of EDA2R were increased in the kidneys of diabetic mice. Immunohistochemical studies revealed that EDA2R expression was enhanced in both glomerular and tubular cells of diabetic mice and humans. In vitro studies, high glucose increased EDA2R expression in cultured human podocytes. Overexpression of EDA2R in podocytes promoted podocyte apoptosis and decreased nephrin expression. Moreover, ED2AR increased ROS generation in podocytes, while inhibiting ROS generation attenuates EDA2R-mediated podocyte injury. In addition, EDA2R silencing partially suppressed high glucose-induced ROS generation, apoptosis, and nephrin decrease. Our study demonstrated that high glucose increases EDA2R expression in kidney cells and that EDA2R induces podocyte apoptosis and dedifferentiation in high glucose milieu partially through enhanced ROS generation.


Asunto(s)
Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo , Podocitos/metabolismo , Receptor Xedar/fisiología , Animales , Apoptosis , Células Cultivadas , Femenino , Riñón/patología , Proteínas de la Membrana/metabolismo , Ratones , Podocitos/patología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Nanoscale Res Lett ; 14(1): 316, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31535237

RESUMEN

Laminarin conjugate-based nano-scaled particles were in this study proposed as a delivery system for protoporphyrin IX (Pp IX) in photodynamic therapy (PDT) of human breast cancer cells (MCF-7). Hematin-Laminarin-Dithiodipropionic Acid-MGK, named as HLDM, was an amphiphilic carrier material with dual pH/redox sensitive that could be used to load hydrophobic drug to improve their solubility and enhance biocompatibility. Therefore, we combined photosensitizer (Pp IX) with HLDM to fabricate a novel nano-micelles, herein called Pp IX-loaded HLDM micelles. The Pp IX-loaded HLDM micelles were 149.3 ± 35 nm sized in neutral water. Phototoxicity, in vitro PDT effect, and dual sensibility to pH and redox microenvironment of Pp IX-loaded HLDM micelles were examined at different concentrations by using MCF-7 human breast cancer cells. The experiments on phototoxicity and reactive oxygen species (ROS) production proved that the micelles could produce PDT to kill the cancer cells with a certain wavelength light. The apoptosis experiment indicated that the micelles could cause nuclear damage. In vivo PDT effect of the micelles was studied by constructing the tumor-bearing nude mouse model of MCF-7 cells. In vivo studies showed that the Pp IX-loaded HLDM micelles could induce remarkable anti-tumor effect. A promising laminarin-based nanomedicine platform acts as a new drug delivery system to enhance the uptake, accumulation, and PDT efficacy of Pp IX in vitro and in vivo.

15.
Cell Reprogram ; 21(3): 141-151, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30985214

RESUMEN

The many circadian clock genes build up a network structure that controls physiological processes, such as the sleep cycle, metabolism, and hormone secretion. Cryptochrome 1 (CRY1), as one of the critical circadian proteins, is closely related to bone formation. However, the regulatory function of CRY1 in osteogenic differentiation remains unclear. In this study, we investigated the role of CRY1 in regulating proliferation and osteoblast differentiation in C3H10 and C2C12 cells after silencing Cry1 using short hairpin RNA interference. In vitro experiments confirmed that the expression level of CRY1 gradually increased during the osteogenic differentiation process, and Cry1 knockdown inhibited the proliferation and differentiation of osteoblastic cells. In addition, Cry1 knockdown inhibited the phosphorylation of AKT kinase (AKT) and extracellular signal-regulated kinase (ERK), which suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK)-ERK signaling pathways. Taken together, these findings show that CRY1 regulates the proliferation and differentiation of osteoblastic cells in an AKT and ERK-dependent manner.


Asunto(s)
Huesos/metabolismo , Criptocromos/metabolismo , Sistema de Señalización de MAP Quinasas , Osteogénesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Huesos/fisiología , Células HEK293 , Humanos , Ratones
16.
J Cancer ; 9(14): 2480-2491, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026846

RESUMEN

The many circadian clock genes buildup a network structure that controls physiological processes such as sleep cycle, metabolism and hormone secretion. A close relationship exists between circadian rhythm and cancers because cell cycle is affected by clock controlled genes (CCGs), including Cyclin D1, Cyclin A, Cyclin E and P21. The abnormal expression of the core circadian clock gene Cryptochrome 1 (Cry1) was found in many types of cancers. However, it is still unclear the exact mechanism of Cry1 dysregulation influences carcinogenesis and progression of cancers. In this study, we investigated the role of Cry1 in regulating proliferation and migration of Hos and U2os human osteosarcoma cells by silencing Cry1 using short hairpin RNA interference. Our data from in vitro and in vivo experiments confirmed that Cry1 knockdown enhanced proliferation and migration of osteosarcoma cells. Then, Cry2, Per1, Per2, Per3, Bmal1 and Clock were found up regulated, while Dec1, Dec2, CK1ε and Npas2 were downregulated at mRNA level. Besides, Akt/P53/P21 signaling was activated after Cry1 silencing and Akt was negatively phosphorylated along with Cry1 expression, while enhanced progression of osteosarcoma cells by Cry1 knockdown was reversed when Akt inhibitor treated. Furthermore, the rescue experiment verified the Akt/P53/P21 was downstream genes of Cry1 to control osteosarcoma progression. Taken together, these findings provide a new insight into how Cry1 regulates clock gene network and promotes proliferation and migration in a Akt dependent manner in human osteosarcoma cells.

17.
J Biomed Nanotechnol ; 14(9): 1568-1577, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29958551

RESUMEN

In order to improve the anti-cancer therapy efficiency of hydrophobic drugs such as curcumin (Cur), a novel dual pH/redox sensitive marine laminarin-based nanomedicine carrier biomaterial with photo-dynamic therapy (PDT) was synthesized in this study. The new synthetic chemical structure, named as Hematin-Laminarin-Dithiodipropionic Acid-MGK (HLDM), was characterized by 1H-NMR and IR. The Cur-loaded micelles were then prepared via dialysis method. The HLDM could self-assemble into micelles in water with hydrodynamic diameter of 135±15 nm. The particle size, zeta potential and morphology of micelles were detected by transmission electron microscope (TEM). Interestingly, the in vitro release experiment showed that the release amount of Cur-loaded HLDM micelles could reach 80% in the pH and redox sensitive environment. Furthermore, cell study showed that the Cur-loaded HLDM micelles had stronger cellular uptake and cytotoxicity to MCF-7 cells than that of HLDM. The multifunctional marine laminarin based nanomedicine carrier biomaterial can be used for new drug delivery systems with dual pH/redox sensitivity for cancer therapy.


Asunto(s)
Glucanos/química , Antineoplásicos , Materiales Biocompatibles , Curcumina , Portadores de Fármacos , Concentración de Iones de Hidrógeno , Micelas , Nanomedicina , Oxidación-Reducción , Tamaño de la Partícula
18.
Med Sci Monit ; 24: 3856-3862, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879092

RESUMEN

BACKGROUND Circadian disruption is a potential cancer risk factor in humans. However, the role of the clock gene, cryptochrome 2 (CRY2), in osteosarcoma (OS) is still not clear. MATERIAL AND METHODS To evaluate the potential role of CRY2 in HOS osteosarcoma cells, CRY2-silenced cell lines were established. Furthermore, we investigated the effect of CRY2 knockdown on HOS cells by CCK-8, colony formation, migration assay, and flow cytometry, in vitro. RESULTS CRY2 knockdown promoted HOS OS cell proliferation and migration. We used a cell cycle assay to show that CRY2 knockdown increased the S phase cell population and reduced the G1 phase cell population. Western blot analyses showed that CRY2 knockdown decreased P53 expression and increased expression of c-myc and cyclin D1. Simultaneously, CRY2 knockdown increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, but did not change the phosphorylation of c-Jun N terminal kinase (JNK) and P38. CRY2 knockdown also increased the expression of matrix metalloproteinase (MMP)-2 and ß-catenin, and increased OS cell proliferation and migration by inducing cell cycle progression and promoting mitogen-activated protein kinase (MAPK) and Wnt/ß-catenin signaling pathways. Although it has previously been unclear whether the expression of CRY2 affects the expression of other clock genes in the clock gene network, our results show that knockdown of CRY2 significantly increased the mRNA expression of CRY1, Period (PER) 1, PER2, BMAL1, and CLOCK. CONCLUSIONS Our results suggest that CRY2 may be an anti-oncogene in OS, whose functions involve both downstream genes and other circadian genes.


Asunto(s)
Relojes Biológicos/genética , Movimiento Celular/genética , Criptocromos/genética , Redes Reguladoras de Genes , Osteosarcoma/genética , Osteosarcoma/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Criptocromos/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , eIF-2 Quinasa/metabolismo
19.
Mol Pharm ; 15(7): 2764-2769, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29792799

RESUMEN

Many cancers, such as human breast cancer and lung cancer, easily metastasize to bones, leading to the formation of secondary tumors in advanced stages. On the basis of the CD44-targeted effect of oHA and the bone-targeted effect of ALN, we prepared a reduction-responsive, CD44 receptor-targeting and bone-targeting nanomicelle, called CUR-loaded ALN-oHA-S-S-CUR micelles. In this study, we aimed to evaluate the antitumor activity and bone-targeting ability of CUR-loaded ALN-oHA-S-S-CUR micelles. The in vivo experiment results showed that a larger number of micelles was gathered in the bone metastatic tumor tissue and reduced the bone destruction. The CUR-loaded ALN-oHA-S-S-CUR micelles markedly inhibited the tumor growth. So the CUR-loaded ALN-oHA-S-S-CUR micelles constitute a promising drug delivery system for bone tumor therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Óseas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Curcumina/administración & dosificación , Portadores de Fármacos/química , Alendronato/química , Animales , Antineoplásicos/farmacocinética , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Curcumina/farmacocinética , Liberación de Fármacos , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Micelas , Oxidación-Reducción , Tamaño de la Partícula , Polímeros/química , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Artif Cells Nanomed Biotechnol ; 46(sup2): 659-667, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29703084

RESUMEN

To remedy the problems resulting from the usage of anti-cancer drugs in cancer chemotherapy, such as deficient drug concentration in tumour cells, low water-solubility and non-specific distribution of antitumour drugs, a kind of reduction-sensitive polymer prodrug of curcumin (Cur) containing in the nano-echinus was synthesized and designed. The nano-echinus-like nanomedicine presented synergistic effect with glycyrrhetic acid (GA) and oligomeric hyaluronic (HA) for targeting and combating HepG2 human liver cancer cell. Firstly, a kind of small molecular prodrug of Cur, dithiodipropionic acid-Cur (-SS-Cur), was chemically conjugated onto the side chain of the conjugated glycyrrhetic acid- oligomeric hyaluronic (GA-HA) to generate an amphiphilic polymeric prodrug of Cur, GA-HA-SS-Cur. The obtained GA-HA-SS-Cur prodrug and subsidiary material mPEG-DSPE could self-assemble into a sea urchin-like micelles in aqueous media and release Cur rapidly in response to glutathion (GSH). Then, Cur was loaded into the nano-echinus with a particle size of (118.1 ± 0.2 nm) and drug-loading efficiency of (8.03 ± 2.1%). The structure of GA-HA-SS-Cur was characterized by 1H-NMR in this report. The morphology of micelles was observed with a transmission electron microscope (TEM). Subsequently, the reduction-sensitivity of the nano-echinus was confirmed by the changes in in-vitro drug release after different concentrations of GSH treatment. Besides, the cellular uptake behaviour and MTT assays of the nano-echinus were investigated, suggesting that the nano-echinus was of desirable safety and could be taken into HepG2 cells in a time-dependent manner. Later, anti-tumour efficacy in vivo revealed the effective inhibition of tumour growth.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Micelas , Nanomedicina , Erizos de Mar , Animales , Transporte Biológico , Materiales Biomiméticos/metabolismo , Técnicas de Química Sintética , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Células Hep G2 , Humanos , Ratones , Ratones Desnudos , Oxidación-Reducción , Tamaño de la Partícula , Fosfatidiletanolaminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA