Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Physiol Plant ; 176(4): e14433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994561

RESUMEN

Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.


Asunto(s)
Cadmio , Germinación , Semillas , Trifolium , Cadmio/toxicidad , Germinación/efectos de los fármacos , Trifolium/efectos de los fármacos , Trifolium/metabolismo , Trifolium/genética , Trifolium/crecimiento & desarrollo , Trifolium/fisiología , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Azúcares/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
2.
Adv Mater ; : e2405890, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045923

RESUMEN

Mild-hyperthermia photothermal therapy (mPTT) has therapeutic potential with minimized damage to normal tissues. However, the poorly vascularized tumor area severely hampers the penetration of photothermal agents (PTAs), resulting in their heterogeneous distribution and the subsequent heterogeneous local temperature during mPTT. The presence of regions below the therapeutic 42 °C threshold can lead to incomplete tumor ablation and potential recurrence. Additionally, tumor anti-apoptosis and cytoprotection pathways, particularly activated thermoresistance, can nullify mild hyperthermia-induced tumor damage. Therefore, a bioinspired photosensitizer decorated with leucine to form biomimetic nanoclusters (CP-PLeu nanoparticles (NPs)) aimed at achieving rapid and homogeneous accumulation in tumors, is introduced. Moreover, CP-PLeu exhibits photodynamic effects that reverse tumor thermoresistance and physiological repair mechanisms, thereby inhibiting tumor resistance to hyperthermia. With the addition of NIR-II laser irradiation, CP-PLeu optimizes the therapeutic efficacy of mPTT and contributes to a minimally invasive therapeutic process for breast cancer. This therapeutic strategy, utilizing a biomimetic photosensitizer for homogeneous distribution of therapeutic temperature and photoactivated reversal of tumor thermoresistance, successfully achieves efficient breast tumor inhibition through an atraumatic mPTT process.

3.
bioRxiv ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39026862

RESUMEN

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance: Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.

4.
Poult Sci ; 103(10): 104066, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39067123

RESUMEN

Cadmium (Cd), a highly toxic heavy metal in the environment, poses a significant threat to livestock and poultry farming. Honokiol (HNK), a Chinese herbal extract with potent antioxidant activity, acts through oxidative damage and inflammation. Cd induces oxidative stress and causes liver damage in animals. However, whether HNK can alleviate Cd-induced liver injury in chickens and its mechanism remains unclear. In this study, the 48 chickens were randomly allocated into 4 groups, control group, Cd group (70 mg/kg Cd), HNK group (200 mg/kg HNK) and Cd + HNK group (70 mg/kg Cd+200 mg/kg HNK). Results showed that HNK improved the Cd induced reduction in chicken body weight, liver weight, and liver coefficient. HNK recovered the Cd induced liver damaged through increased serum liver biochemical indexes, impaired liver oxidase activity and the disordered the expression level of antioxidant genes. HNK alleviated Cd induced pathological and ultrastructure damage of liver tissue and liver cell that leads apoptosis. HNK decreased Cd contents in the liver, Cd induced disturbances in the levels of trace elements such as iron, copper, zinc, manganese, and selenium. HNK attenuated the damage to the gap junction structure of chicken liver cells caused by Cd and reduced the impairment of oxidase activity and the expression level of antioxidant genes induced by Cd. In conclusion, HNK presents essential preventive measures and a novel pharmacological potential therapy against Cd induced liver injury. Our experiments show that HNK can be used as a new green feed additive in the poultry industry, which provides a theoretical basis for HNK to deal with the pollution caused by Cd in the poultry industry.

5.
J Chem Inf Model ; 64(15): 5853-5866, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39052623

RESUMEN

Machine learning plays a role in accelerating drug discovery, and the design of effective machine learning models is crucial for accurately predicting molecular properties. Characterizing molecules typically involves the use of molecular fingerprints and molecular graphs. These are input into a multilayer perceptron (MLP) and variants of graph neural networks, such as graph attention networks (GATs). Due to the diverse types and large dimension of fingerprints, models may contain many features that are relatively irrelevant or redundant; meanwhile, although the GAT excels in handling heterogeneous graph tasks, it lacks the ability to extract collaborative information from neighboring nodes, which is crucial in scenarios where it cannot capture the joint influence of adjacent groups on atoms. To overcome these challenges, we introduce a hybrid model, combining improved GAT and MLP. In GAT, the recurrent neural network is employed to capture collaborative information. To address the dimensionality issue, we propose a feature selection algorithm, which is based on the principle of maximizing relevance while minimizing redundancy. Through experiments on 13 public data sets and 14 breast cell lines, our model demonstrates superior performance compared to state-of-the-art deep learning and traditional machine learning algorithms. Additionally, a series of ablation experiments were conducted to demonstrate the advantages of our improved version, as well as its antinoise capability and interpretability. These results indicate that our model holds promising prospects for practical applications.


Asunto(s)
Redes Neurales de la Computación , Humanos , Aprendizaje Automático , Algoritmos , Línea Celular Tumoral , Descubrimiento de Drogas/métodos
6.
Curr Oncol ; 31(6): 3073-3085, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38920718

RESUMEN

Canada's decentralized healthcare system may lead to regional disparities in survival among Canadians diagnosed with central nervous system (CNS) tumours. We identified 50,670 patients diagnosed with a first-ever primary CNS tumour between 2008 and 2017 with follow-up until 31 December 2017. We selected the four highest incidence histologies and used proportional hazard regression to estimate hazard ratios (HRs) for five regions (British Columbia, Prairie Provinces, Ontario, Atlantic Provinces and the Territories), adjusting for sex, tumour behaviour and patient age. Ontario had the best survival profile for all histologies investigated. The Atlantic Provinces had the highest HR for glioblastoma (HR = 1.26, 95% CI: 1.18-1.35) and malignant glioma not otherwise specified (NOS) (Overall: HR = 1.87, 95% CI:1.43-2.43; Pediatric population: HR = 2.86, 95% CI: 1.28-6.39). For meningioma, the Territories had the highest HR (HR = 2.44, 95% CI: 1.09-5.45) followed by the Prairie Provinces (HR = 1.52, 95% CI: 1.38-1.67). For malignant unclassified tumours, the highest HRs were in British Columbia (HR = 1.45, 95% CI: 1.22-1.71) and the Atlantic Provinces (HR = 1.40, 95% CI: 1.13-1.74). There are regional differences in the survival of CNS patients at the population level for all four specific histological types of CNS tumours investigated. Factors contributing to these observed regional survival differences are unknown and warrant further investigation.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Humanos , Neoplasias del Sistema Nervioso Central/mortalidad , Canadá/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Adulto Joven , Adolescente , Niño , Preescolar , Lactante
7.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824268

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Asunto(s)
Neoplasias de la Mama , Transición Epitelial-Mesenquimal , Macrófagos Asociados a Tumores , Humanos , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual/métodos , Células MCF-7 , Movimiento Celular/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Análisis de Secuencia de ARN/métodos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Transducción de Señal/genética , Microambiente Tumoral/genética
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167304, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878830

RESUMEN

Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.

9.
Planta ; 260(1): 33, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896325

RESUMEN

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Asunto(s)
Agrostis , Aluminio , Antioxidantes , Malatos , Raíces de Plantas , Ácido gamma-Aminobutírico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Antioxidantes/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Aluminio/toxicidad , Agrostis/efectos de los fármacos , Agrostis/metabolismo , Agrostis/fisiología , Malatos/metabolismo , Ácido Cítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos
10.
FEBS Lett ; 598(13): 1591-1604, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724485

RESUMEN

Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aß) plaques in a mouse model of AD but that Aß directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aß as it possesses a unique binding site. Intriguingly, exogenous addition of Aß to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aß, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Neuronas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Péptidos beta-Amiloides/metabolismo , AMP Cíclico/metabolismo , Ratones , Neuronas/metabolismo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Unión Proteica , Activación Enzimática , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología
11.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646759

RESUMEN

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Asunto(s)
Carbón Orgánico , Cucumis sativus , Nitrógeno , Raíces de Plantas , Plantones , Suelo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Nitrógeno/metabolismo , Suelo/química , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo , Agricultura/métodos , Rizosfera
12.
Sci Rep ; 14(1): 8998, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637546

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
13.
Foods ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672890

RESUMEN

Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.

14.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608885

RESUMEN

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Asunto(s)
Cadmio , Células Epiteliales , Piroptosis , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Piroptosis/efectos de los fármacos , Cadmio/toxicidad , Ratas , Células Epiteliales/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Túbulos Renales , Factor de Transcripción ReIA/metabolismo , Acetilación , Inflamasomas/metabolismo , Túbulos Renales Proximales
15.
Poult Sci ; 103(6): 103706, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631227

RESUMEN

Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.


Asunto(s)
Alimentación Animal , Pollos , Osteogénesis , Osteoprotegerina , Proantocianidinas , Ligando RANK , Animales , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Ligando RANK/metabolismo , Proantocianidinas/farmacología , Proantocianidinas/administración & dosificación , Pollos/crecimiento & desarrollo , Osteogénesis/efectos de los fármacos , Embrión de Pollo , Alimentación Animal/análisis , Osteoclastos/efectos de los fármacos , Dieta/veterinaria , Distribución Aleatoria , Suplementos Dietéticos/análisis , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Relación Dosis-Respuesta a Droga
16.
J Cancer ; 15(8): 2318-2328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495493

RESUMEN

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

17.
Biochem Pharmacol ; 223: 116167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527558

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) prevalence is rising globally with no pharmacotherapies approved. Hepatic steatosis is closely associated with progression and prognosis of NAFLD. Dapagliflozin, kind of sodium-glucose cotransporter 2 (SGLT2) inhibitor, was found to improve NAFLD in clinical trials, while the underlying mechanism remains poorly elucidated. Here, we reported that dapagliflozin effectively mitigated liver injury and relieved lipid metabolism disorders in vivo. Further investigation showed that dapagliflozin markedly suppressed Liver X Receptor α (LXRα)-mediated synthesis of de novo lipids and bile acids (BAs). In AML12 cells, our results proved dapagliflozin decreased lipid contents via inhibiting the expression of LXRα and downstream liposynthesis genes. Proteosome inhibitor MG132 eliminated the effect of dapagliflozin on LXRα-mediated signaling pathway, which suggested that dapagliflozin downregulated LXRα expression through increasing LXRα degradation. Knockdown of LXRα with siRNA abolished the reduction of lipogenesis from dapagliflozin treatment, indicating that LXRα might be the pivotal target for dapagliflozin to exhibit the aforementioned benefits. Furthermore, the data showed that dapagliflozin reversed gut dysbiosis induced by BAs disruption and altered gut microbiota profile to reduce intestinal lipids absorption. Together, our study deciphered a novel mechanism by which dapagliflozin relieved hepatic steatosis and highlighted the potential benefit of dapagliflozin in treating NAFLD.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores X del Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Lípidos/farmacología
19.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399439

RESUMEN

Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.

20.
Pain Med ; 25(7): 468-477, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38374234

RESUMEN

OBJECTIVES: Pain catastrophizing (PC) is a cognitive/emotional response to and in anticipation of pain that can be maladaptive, further exacerbating pain and difficulty in emotion regulation (ER). There is a lack of research on the interplay between PC and ER and its impact on pain. Our aim was to investigate whether ER exacerbated the pain experience through PC. METHODS: Adults with chronic non-cancer pain of >3 months' duration (n = 150) who were taking opioid medication were recruited from a large medical center in Pennsylvania. A battery of questionnaires was conducted to gather data on demographics, substance use, mental health histories, and health and pain outcomes. Measures used included the 18-Item Difficulties in Emotion Regulation Scale, the Pain Catastrophizing Scale, the Brief Pain Inventory-Short Form, and the Hospital Anxiety and Depression Scale. A structural equation model with latent variables was conducted to examine our aim. RESULTS: Both pain interference and severity were significantly positively associated with several psychosocial variables, such as anxiety, depression, ER constructs, PC, and distress intolerance. The associations between subscales and pain interference were larger than the associations between subscales and pain severity. PC fully mediated the paths from ER to pain experiences. DISCUSSION: Our results highlight the importance of several cognitive and emotional constructs: nonacceptance of negative emotions, lack of emotional awareness, magnification of the pain experience, and a sense of helplessness. Furthermore, by showing the indirect effects of PC in affecting ER and pain, we posit that ER, mediated by PC, might serve a critical role in influencing the pain experience in patients with chronic pain.


Asunto(s)
Catastrofización , Dolor Crónico , Regulación Emocional , Humanos , Catastrofización/psicología , Dolor Crónico/psicología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Dimensión del Dolor , Encuestas y Cuestionarios , Depresión/psicología , Analgésicos Opioides/uso terapéutico , Ansiedad/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA