Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36613986

RESUMEN

ATP binding cassette (ABC) transporters are the primary means by which bacteria acquire trace elements from the environment. They rely on solute binding proteins (SBPs) to bind the relevant substrate and deliver it to the integral membrane permease for ATP-powered import into the cytoplasm. SBPs of cluster A-I are known to facilitate the transport of essential metals zinc, manganese, and iron, and many have been characterized to date. A group of ABC transporter operons dubbed zinc-regulated genes (zrg) have recently been shown to transport zinc with putative SBPs (zrgA) bearing no homology to the classical cluster A-I family, and a recent crystal structure of a representative protein from Pseudomonas aeruginosa shows no structural similarity to classical SBPs. Thus, the ZrgA proteins appear to represent a newly discovered family of zinc SBPs widespread among Gram-negative bacteria, including human pathogens. Here, we have determined the crystal structure of ZrgA from Vibrio cholerae and characterized its zinc binding in vitro and function in vivo. We also assessed the role of a histidine-rich sequence that appears to be a hallmark of ZrgA proteins that is particularly long in V. cholerae ZrgA. The results show that the zrgA gene is critical to the function of the operon, consistent with a function as an SBP in this system. Further, the His-rich region is not essential to the function of ZrgA, but it does provide additional zinc binding sites in vitro. The structure and zinc binding data for ZrgA reveal interesting differences between it and its homologue from P. aeruginosa, illustrating diversity within this little-studied protein family.


Asunto(s)
Proteínas Bacterianas , Zinc , Humanos , Proteínas Bacterianas/metabolismo , Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Adenosina Trifosfato/metabolismo , Unión Proteica
2.
J Biol Chem ; 295(19): 6472-6481, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32234764

RESUMEN

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.


Asunto(s)
Aminoácido Oxidorreductasas/química , Proteínas Bacterianas/química , Pseudoalteromonas/enzimología , Aminoácido Oxidorreductasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Mutación Missense , Pseudoalteromonas/genética , Especificidad por Sustrato
3.
J Biol Chem ; 294(46): 17463-17470, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615898

RESUMEN

PlGoxA from Pseudoalteromonas luteoviolacea is a glycine oxidase that utilizes a protein-derived cysteine tryptophylquinone (CTQ) cofactor. A notable feature of its catalytic mechanism is that it forms a stable product-reduced CTQ adduct that is not hydrolyzed in the absence of O2 Asp-678 resides near the quinone moiety of PlGoxA, and an Asp is structurally conserved in this position in all tryptophylquinone enzymes. In those other enzymes, mutation of that Asp results in no or negligible CTQ formation. In this study, mutation of Asp-678 in PlGoxA did not abolish CTQ formation. This allowed, for the first time, studying the role of this residue in catalysis. D678A and D678N substitutions yielded enzyme variants with CTQ, which did not react with glycine, although glycine was present in the crystal structures in the active site. D678E PlGoxA was active but exhibited a much slower kcat This mutation altered the kinetic mechanism of the reductive half-reaction such that one could observe a previously undetected reactive intermediate, an initial substrate-oxidized CTQ adduct, which converted to the product-reduced CTQ adduct. These results indicate that Asp-678 is involved in the initial deprotonation of the amino group of glycine, enabling nucleophilic attack of CTQ, as well as the deprotonation of the substrate-oxidized CTQ adduct, which is coupled to CTQ reduction. The structures also suggest that Asp-678 is acting as a proton relay that directs these protons to a water channel that connects the active sites on the subunits of this homotetrameric enzyme.


Asunto(s)
Aminoácido Oxidorreductasas/química , Coenzimas/química , Dipéptidos/química , Indolquinonas/química , Pseudoalteromonas/enzimología , Aminoácido Oxidorreductasas/genética , Secuencia de Aminoácidos/genética , Catálisis , Dominio Catalítico/genética , Coenzimas/genética , Dipéptidos/genética , Glicina/química , Indolquinonas/genética , Cinética , Modelos Moleculares , Mutación , Pseudoalteromonas/química
4.
Biochemistry ; 58(6): 706-713, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30605596

RESUMEN

The LodA-like proteins make up a recently identified family of enzymes that rely on a cysteine tryptophylquinone cofactor for catalysis. They differ from other tryptophylquinone enzymes in that they are oxidases rather than dehydrogenases. GoxA is a member of this family that catalyzes the oxidative deamination of glycine. Our previous work with GoxA from Pseudoalteromonas luteoviolacea demonstrated that this protein forms a stable intermediate upon anaerobic incubation with glycine. The spectroscopic properties of this species were unique among those identified for tryptophylquinone enzymes characterized to date. Here we use X-ray crystallography and resonance Raman spectroscopy to identify the GoxA catalytic intermediate as a product Schiff base. Structural work additionally highlights features of the active site pocket that confer substrate specificity, intermediate stabilization, and catalytic activity. The unusual properties of GoxA are discussed within the context of the other tryptophylquinone enzymes.


Asunto(s)
Aminoácido Oxidorreductasas/química , Glicina/química , Bases de Schiff/química , Dominio Catalítico , Oxígeno/química , Pseudoalteromonas/enzimología , Espectrometría Raman , Estereoisomerismo
5.
Arch Biochem Biophys ; 654: 40-46, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30026025

RESUMEN

Tryptophyquinone-bearing enzymes contain protein-derived cofactors formed by posttranslational modifications of Trp residues. Tryptophan tryptophylquinone (TTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to another Trp residue. Cysteine tryptophylquinone (CTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to a Cys residue. Despite the similarity of these cofactors, it has become evident in recent years that the overall structures of the enzymes that possess these cofactors vary, and that the gene clusters that encode the enzymes are quite diverse. While it had been long assumed that all tryptophylquinone enzymes were dehydrogenases, recently discovered classes of these enzymes are oxidases. A common feature of enzymes that have these cofactors is that the posttranslational modifications that form the mature cofactors are catalyzed by a modifying enzyme. However, it is now clear that modifying enzymes are different for different tryptophylquinone enzymes. For methylamine dehydrogenase a di-heme enzyme, MauG, is needed to catalyze TTQ biosynthesis. However, no gene similar to mauG is present in the gene clusters that encode the other enzymes, and the recently characterized family of CTQ-dependent oxidases, termed LodA-like proteins, require a flavoenzyme for cofactor biosynthesis.


Asunto(s)
Coenzimas/biosíntesis , Coenzimas/química , Indolquinonas/metabolismo , Triptófano/análogos & derivados , Catálisis , Conformación Proteica , Procesamiento Proteico-Postraduccional , Triptófano/metabolismo
6.
Biochemistry ; 57(7): 1155-1165, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29381339

RESUMEN

Glycine oxidase from Pseudoalteromonas luteoviolacea (PlGoxA) is a cysteine tryptophylquinone (CTQ)-dependent enzyme. Sequence analysis and phylogenetic analysis place it in a newly designated subgroup (group IID) of a recently identified family of LodA-like proteins, which are predicted to possess CTQ. The crystal structure of PlGoxA reveals that it is a homotetramer. It possesses an N-terminal domain with no close structural homologues in the Protein Data Bank. The active site is quite small because of intersubunit interactions, which may account for the observed cooperativy toward glycine. Steady-state kinetic analysis yielded the following values: kcat = 6.0 ± 0.2 s-1, K0.5 = 187 ± 18 µM, and h = 1.77 ± 0.27. In contrast to other quinoprotein amine dehydrogenases and oxidases that exhibit anomalously large primary kinetic isotope effects on the rate of reduction of the quinone cofactor by the amine substrate, no significant primary kinetic isotope effect was observed for this reaction of PlGoxA. The absorbance spectrum of glycine-reduced PlGoxA exhibits features in the range of 400-650 nm that have not previously been seen in other quinoproteins. Thus, in addition to the unusual structural features of PlGoxA, the kinetic and chemical reaction mechanisms of the reductive half-reaction of PlGoxA appear to be distinct from those of other amine dehydrogenases and amine oxidases that use tryptophylquinone and tyrosylquinone cofactors.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Dipéptidos/metabolismo , Indolquinonas/metabolismo , Pseudoalteromonas/enzimología , Aminoácido Oxidorreductasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glicina/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Multimerización de Proteína , Pseudoalteromonas/química , Pseudoalteromonas/metabolismo , Alineación de Secuencia
7.
J Biol Chem ; 291(34): 17547-56, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27358409

RESUMEN

Heme nitric oxide/oxygen (H-NOX)-binding proteins act as nitric oxide (NO) sensors among various bacterial species. In several cases, they act to mediate communal behavior such as biofilm formation, quorum sensing, and motility by influencing the activity of downstream signaling proteins such as histidine kinases (HisKa) in a NO-dependent manner. An H-NOX/HisKa regulatory circuit was recently identified in Vibrio cholerae, and the H-NOX protein has been spectroscopically characterized. However, the influence of the H-NOX protein on HisKa autophosphorylation has not been evaluated. This process may be important for persistence and pathogenicity in this organism. Here, we have expressed and purified the V. cholerae HisKa (HnoK) and H-NOX in its heme-bound (holo) and heme-free (apo) forms. Autophosphorylation assays of HnoK in the presence of H-NOX show that the holoprotein in the Fe(II)-NO and Fe(III) forms is a potent inhibitor of HnoK. Activity of the Fe(III) form and aerobic instability of the Fe(II) form suggested that Vibrio cholerae H-NOX may act as a sensor of the redox state as well as NO. Remarkably, the apoprotein also showed robust HnoK inhibition that was dependent on the oxidation of cysteine residues to form disulfide bonds at a highly conserved zinc site. The importance of cysteine in this process was confirmed by mutagenesis, which also showed that holo Fe(III), but not Fe(II)-NO, H-NOX relied heavily upon cysteine for activation. These results highlight a heme-independent mechanism for activation of V. cholerae H-NOX that implicates this protein as a dual redox/NO sensor.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Vibrio cholerae/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hemo/genética , Hemo/metabolismo , Fosforilación , Estabilidad Proteica , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
8.
Genes Dev ; 28(16): 1758-71, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25128496

RESUMEN

The dynamic reversible methylation of lysine residues on histone proteins is central to chromatin biology. Key components are demethylase enzymes, which remove methyl moieties from lysine residues. KDM2A, a member of the Jumonji C domain-containing histone lysine demethylase family, specifically targets lower methylation states of H3K36. Here, structural studies reveal that H3K36 specificity for KDM2A is mediated by the U-shaped threading of the H3K36 peptide through a catalytic groove within KDM2A. The side chain of methylated K36 inserts into the catalytic pocket occupied by Ni(2+) and cofactor, where it is positioned and oriented for demethylation. Key residues contributing to K36me specificity on histone H3 are G33 and G34 (positioned within a narrow channel), P38 (a turn residue), and Y41 (inserts into its own pocket). Given that KDM2A was found to also bind the H3K36me3 peptide, we postulate that steric constraints could prevent α-ketoglutarate from undergoing an "off-line"-to-"in-line" transition necessary for the demethylation reaction. Furthermore, structure-guided substitutions of residues in the KDM2A catalytic pocket abrogate KDM2A-mediated functions important for suppression of cancer cell phenotypes. Together, our results deduce insights into the molecular basis underlying KDM2A regulation of the biologically important methylated H3K36 mark.


Asunto(s)
Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Modelos Moleculares , Animales , Sitios de Unión , Línea Celular , Inestabilidad Genómica , Histona Demetilasas con Dominio de Jumonji/genética , Metilación , Ratones , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína
9.
Biochemistry ; 52(52): 9447-55, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24320950

RESUMEN

The di-heme enzyme MauG catalyzes the oxidative biosynthesis of a tryptophan tryptophylquinone cofactor on a precursor of the enzyme methylamine dehydrogenase (preMADH). Reaction of H2O2 with the diferric form of MauG, or reaction of O2 with diferrous MauG, forms the catalytic intermediate known as bis-Fe(IV), which acts as the key oxidant during turnover. The site of substrate oxidation is more than 40 Å from the high-spin heme iron where H2O2 initially reacts, and catalysis relies on radical hopping through an interfacial residue, Trp199 of MauG. In the absence of preMADH, the bis-Fe(IV) intermediate is remarkably stable, but repeated exposure to H2O2 results in suicide inactivation. Using mass spectrometry, we show that this process involves the oxidation of three Met residues (108, 114, and 116) near the high-spin heme through ancillary electron transfer pathways engaged in the absence of substrate. The mutation of a conserved Pro107 in the distal pocket of the high-spin heme results in a dramatic increase in the level of oxidation of these Met residues. These results illustrate structural mechanisms by which MauG controls reaction with its high-valent heme cofactor and limits uncontrolled oxidation of protein residues and loss of catalytic activity. The conservation of Met residues near the high-spin heme among MauG homologues from different organisms suggests that eventual deactivation of MauG may function in a biological context. That is, methionine oxidation may represent a protective mechanism that prevents the generation of reactive oxygen species by MauG in the absence of preMADH.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Paracoccus denitrificans/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Hemo/química , Hierro/química , Cinética , Metionina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Paracoccus denitrificans/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo
10.
J Am Chem Soc ; 131(21): 7234-5, 2009 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-19469573

RESUMEN

The dioxygenation of nitric oxide by oxyheme in globin proteins is a major route for NO detoxification in aerobic biological systems. In myoglobin, this reaction is thought to proceed through an iron(III)-bound peroxynitrite before homolytic cleavage of the O-O bond to form an iron(IV)-oxo and NO(2) radical followed by recombination and nitrate production. Single turnover experiments at alkaline pH have revealed the presence of a millisecond high-spin heme intermediate. It is widely presumed that this species is an iron(III)-peroxynitrite species, but detailed characterization of the intermediate is lacking. Using resonance Raman spectroscopy and rapid-freeze quench techniques, we identify the millisecond intermediate as an iron(III)-nitrato complex with a symmetric NO(2) stretch at 1282 cm(-1). Greater time resolution techniques will be required to detect the putative iron(III) peroxynitrite complex.


Asunto(s)
Hierro/química , Mioglobina/química , Nitratos/química , Óxido Nítrico/química , Fenómenos Químicos , Ácido Peroxinitroso
11.
Biochemistry ; 48(1): 96-109, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-19072037

RESUMEN

Pseudomonas aeruginosa secretes a 205 residue long hemophore (full-length HasAp) that is subsequently cleaved at the C'-terminal domain to produce mainly a 184 residue long truncated HasAp that scavenges heme [Letoffé, S., Redeker, V., and Wandersman, C. (1998) Mol. Microbiol. 28, 1223-1234]. HasAp has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The X-ray crystal structure of truncated HasAp revealed a polypeptide alphabeta fold and a ferriheme coordinated axially by His32 and Tyr75, with the side chain of His83 poised to accept a hydrogen bond from the Tyr75 phenolic acid group. NMR investigations conducted with full-length HasAp showed that the carboxyl-terminal tail (21 residues) is disordered and conformationally flexible. NMR spectroscopic investigations aimed at studying a complex between apo-HasAp and human methemoglobin were stymied by the rapid heme capture by the hemophore. In an effort to circumvent this problem NMR spectroscopy was used to monitor the titration of 15N-labeled holo-HasAp with hemoglobin. These studies allowed identification of a specific area on the surface of truncated HasAp, encompassing the axial ligand His32 loop that serves as a transient site of interaction with hemoglobin. These findings are discussed in the context of a putative encounter complex between apo-HasAp and hemoglobin that leads to efficient hemoglobin-heme capture by the hemophore. Similar experiments conducted with full-length 15N-labeled HasAp and hemoglobin revealed a transient interaction site in full-length HasAp similar to that observed in the truncated hemophore. The spectral perturbations observed while investigating these interactions, however, are weaker than those observed for the interactions between hemoglobin and truncated HasAp, suggesting that the disordered tail in the full-length HasAp must be proteolyzed in the extracellular milieu to make HasAp a more efficient hemophore.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Hemoglobinas/química , Pseudomonas aeruginosa/química , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
12.
Biochemistry ; 47(49): 13084-92, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19006327

RESUMEN

In Bacillus subtilis, NsrR is required for the upregulation of ResDE-dependent genes in the presence of nitric oxide (NO). NsrR was shown to bind to the promoters of these genes and inhibit their transcription in vitro. NO relieves this inhibition by an unknown mechanism. Here, we use spectroscopic techniques (UV-vis, resonance Raman, and EPR) to show that anaerobically isolated NsrR from B. subtilis contains a [4Fe-4S](2+) cluster, which reacts with NO to form dinitrosyl iron complexes. This method of NO sensing is analogous to that of the FNR protein of Escherichia coli. The Fe-S cluster of NsrR is also reactive toward other exogenous ligands such as cyanide, dithiothreitol, and O(2). These results, together with the fact that there are only three cysteine residues in NsrR, suggest that the 4Fe-4S cluster contains a noncysteinyl labile ligand to one of the iron atoms, leading to high reactivity. Size exclusion chromatography and cross-linking experiments show that NsrR adopts a dimeric structure in its [4Fe-4S](2+) holo form as well as in the apo form. These findings provide a first stepping stone to investigate the mechanism of NO sensing in NsrR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA