Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Chem ; 65(22): 15014-15027, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36378530

RESUMEN

Chemical structures of selective blockers of TASK channels contain aromatic groups and amide bonds. Using this rationale, we designed and synthesized a series of compounds based on 3-benzamidobenzoic acid. These compounds block TASK-1 channels by binding to the central cavity. The most active compound is 3-benzoylamino-N-(2-ethyl-phenyl)-benzamide or F3, blocking TASK-1 with an IC50 of 148 nM, showing a reduced inhibition of TASK-3 channels and not a significant effect on different K+ channels. We identified putative F3-binding sites in the TASK-1 channel by molecular modeling studies. Mutation of seven residues to A (I118A, L122A, F125A, Q126A, L232A, I235A, and L239A) markedly decreased the F3-induced inhibition of TASK-1 channels, consistent with the molecular modeling predictions. F3 blocks cell proliferation and viability in the MCF-7 cancer cell line but not in TASK-1 knockdown MCF-7 cells, indicating that it is acting in TASK-1 channels. These results indicated that TASK-1 is necessary to drive proliferation in the MCF-7 cancer cell line.


Asunto(s)
Neoplasias , Humanos , Relación Estructura-Actividad , Sitios de Unión , Proliferación Celular , Modelos Moleculares , Células MCF-7
2.
Onco Targets Ther ; 15: 783-797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899081

RESUMEN

Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer - cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities - emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.

3.
Pharmaceutics ; 14(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35890252

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.

4.
Biomed Pharmacother ; 129: 110383, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563149

RESUMEN

Withaferin A (WFA), a C5,C6-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood. In the present study, we evaluated the blockade of TASK-3 channels by WFA in TASK-3-expressing HEK-293 cells. Explore if the WFA-mediated TASK-3 blockade can be used as a pharmacological tool to decrease the cell viability in cancer cells. A combination of functional experiments (patch-clamp, gene downregulation, overexpression and pharmacological inhibition) and molecular docking analysis were used to get insights into the mechanism by which the inhibition of TASK-3 by WFA affects the growth and viability of cancer cells. Withaferin A was found to inhibit the activity of TASK-3 channels. The inhibitory effect of Withaferin A on TASK-3 potassium currents was dose-dependent and independent of voltage. Molecular modeling studies identified putative WFA-binding sites in TASK-3 channel involved the channel blockade. In agreements with the molecular modeling predictions, mutation of residues F125 to A (F125A), L197 to V (L197 V) and the double mutant F125A-L197 V markedly decreased the WFA-induced inhibition of TASK-3. Finally, the cytotoxic effect of WFA was tested in MDA-MB-231 human breast cancer cells transfected with TASK-3 or shRNA that decreases TASK-3 expression. Together, our results show that the cytotoxic effect of WFA on fully transformed MDA-MB-231 cells depends on the expression of TASK-3. Herein, we also provide insights into the mechanism of TASK-3 inhibition by WFA.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Witanólidos/farmacología , Antineoplásicos Fitogénicos/metabolismo , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Potenciales de la Membrana , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Unión Proteica , Transducción de Señal , Witanólidos/metabolismo
5.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810225

RESUMEN

Incidence and mortality of gastric cancer is increasing worldwide, in part, because of the lack of new therapeutic targets to treat this disease. Different types of ion channels participate in the hallmarks of cancer. In this context, ion channels are known to exert control over the cell cycle, mechanisms that support survival, angiogenesis, migration, and cell invasion. In particular, TASK-3 (KCNK9), a member of the K2P potassium channel family, has attracted much interest because of its oncogenic properties. However, despite multiple lines of evidence linking TASK-3 to tumorigenesis in various types of cancer, its relationship with gastric cancer has not been fully examined. Therefore, we set out to assess the effect of TASK-3 gene knockdown on KATO III and MKN-45 human gastric adenocarcinoma cell lines by using a short hairpin RNA (shRNA)-mediated knockdown. Our results demonstrate that knocking down TASK-3 reduces cell proliferation and viability because of an increase in apoptosis without an apparent effect on cell cycle checkpoints. In addition, cell migration and invasion are reduced after knocking down TASK-3 in these cell lines. The present study highlights TASK-3 as a key protein involved in migration and cell survival in gastric cancer and corroborates its potential as a therapeutic target for gastric cancer treatment.


Asunto(s)
Adenocarcinoma/genética , Neovascularización Patológica/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Neoplasias Gástricas/genética , Adenocarcinoma/patología , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neovascularización Patológica/patología , Neoplasias Gástricas/patología
6.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426491

RESUMEN

TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 µM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 µM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Diseño de Fármacos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacocinética
7.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596383

RESUMEN

TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA)-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Senescencia Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Canales de Potasio de Dominio Poro en Tándem/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Canales de Potasio de Dominio Poro en Tándem/genética
8.
J Physiol ; 555(Pt 3): 671-82, 2004 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-14724195

RESUMEN

Functional and structural studies demonstrate that Cl(-) channels of the ClC family have a dimeric double-barrelled structure, with each monomer contributing an identical pore. Single protopore gating is a fast process dependent on Cl(-) interaction within the selectivity filter and in ClC-0 has a low temperature coefficient over a 10 degrees C range (Q(10)). A slow gating process closes both protopores simultaneously, has a high Q(10), is facilitated by extracellular Zn(2+) and Cd(2+) and is abolished or markedly reduced by mutation of a cysteine conserved in ClC-0, -1 and -2. In order to test the hypothesis that similar slow and fast gates exist in the widely expressed ClC-2 Cl(-) channel we have investigated the effects of these manoeuvres on ClC-2. We find that the time constants of both components of the double-exponential hyperpolarization-dependent activation (and deactivation) processes have a high temperature dependence, with Q(10) values of about 4-5, suggesting important conformational changes of the channel. Mutating C256 (equivalent to C212 in ClC-0) to A, led to a significant fraction of constitutively open channels at all potentials. Activation time constants were not affected but deactivation was slower and significantly less temperature dependent in the C256A mutant. Extracellular Cd(2+), that inhibits wild-type (WT) channels almost fully, inhibited C256A only by 50%. In the WT, the time constants for opening were not affected by Cd(2+) but deactivation at positive potentials was accelerated by Cd(2+). This effect was absent in the C256A mutant. The effect of intracellular Cl(-) on channel activation was unchanged in the C256A mutant. Collectively our results strongly support the hypothesis that ClC-2 possesses a common gate and that part of the current increase induced by hyperpolarization represents an opening of the common gate. In contrast to the gating in ClC-0, the protopore gate and the common gate of ClC-2 do not appear to be independent.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico/fisiología , Animales , Canales de Cloruro CLC-2 , Cadmio/farmacología , Línea Celular , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Electrofisiología , Humanos , Mutación , Ratas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA