Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(9): 4814-4830, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916349

RESUMEN

Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12's nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar mechanisms of tRNA binding and show tRNASec-dependent ATPase activity. In addition, we demonstrate that Kti12 binds directly to Elongator and that ATP hydrolysis is crucial for Elongator to maintain proper tRNA anticodon modification levels in vivo. In summary, our data reveal a hitherto uncharacterized link between two translational control pathways that regulate selenocysteine incorporation and affect ribosomal tRNA selection via specific tRNA modifications.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Trifosfatasas/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/química , Adenosina Trifosfatasas/química , Anticodón/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Chaetomium/química , Chaetomium/enzimología , Cristalografía por Rayos X , Conformación Proteica , ARN de Transferencia/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Uridina/genética
2.
Nat Struct Mol Biol ; 23(9): 794-802, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455459

RESUMEN

During translation elongation, decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons are receiving increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Mutations in Elongator subunits are associated with certain neurodegenerative diseases and cancer. Here we present the crystal structure of D. mccartyi Elp3 (DmcElp3) at 2.15-Å resolution. Our results reveal an unexpected arrangement of Elp3 lysine acetyltransferase (KAT) and radical S-adenosyl methionine (SAM) domains, which share a large interface and form a composite active site and tRNA-binding pocket, with an iron-sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirmed the relevance of our findings for eukaryotic Elp3s and should aid in understanding the cellular functions and pathophysiological roles of Elongator.


Asunto(s)
Proteínas Bacterianas/química , Histona Acetiltransferasas/química , ARN de Transferencia/química , Dominio Catalítico , Chloroflexi/enzimología , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína , ARN Bacteriano/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA