Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429363

RESUMEN

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Asunto(s)
Enterotoxinas , Intercambiadores de Sodio-Hidrógeno , Ratones , Animales , Humanos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Enterotoxinas/farmacología , Enterotoxinas/metabolismo , Células CACO-2 , Intercambiadores de Sodio-Hidrógeno/metabolismo , Enterocitos/metabolismo , Sodio/metabolismo , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Diarrea/inducido químicamente , Péptidos/efectos adversos , Microvellosidades/metabolismo
2.
mBio ; 13(3): e0094422, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35652591

RESUMEN

Polymorphonuclear neutrophils (PMN) are recruited to the gastrointestinal mucosa in response to inflammation, injury, and infection. Here, we report the development and the characterization of an ex vivo tissue coculture model consisting of human primary intestinal enteroid monolayers and PMN, and a mechanistic interrogation of PMN-epithelial cell interaction and response to Shigella, a primary cause of childhood dysentery. Cellular adaptation and tissue integration, barrier function, PMN phenotypic and functional attributes, and innate immune responses were examined. PMN within the enteroid monolayers acquired a distinct activated/migratory phenotype that was influenced by direct epithelial cell contact as well as by molecular signals. Seeded on the basal side of the intestinal monolayer, PMN were intercalated within the epithelial cells and moved paracellularly toward the apical side. Cocultured PMN also increased basal secretion of interleukin 8 (IL-8). Shigella added to the apical surface of the monolayers evoked additional PMN phenotypic adaptations, including increased expression of cell surface markers associated with chemotaxis and cell degranulation (CD47, CD66b, and CD88). Apical Shigella infection triggered rapid transmigration of PMN to the luminal side, neutrophil extracellular trap (NET) formation, and bacterial phagocytosis and killing. Shigella infection modulated cytokine production in the coculture; apical monocyte chemoattractant protein (MCP-1), tumor necrosis factor alpha (TNF-α), and basolateral IL-8 production were downregulated, while basolateral IL-6 secretion was increased. We demonstrated, for the first time, PMN phenotypic adaptation and mobilization and coordinated epithelial cell-PMN innate response upon Shigella infection in the human intestinal environment. The enteroid monolayer-PMN coculture represents a technical innovation for mechanistic interrogation of gastrointestinal physiology, host-microbe interaction, innate immunity, and evaluation of preventive/therapeutic tools. IMPORTANCE Studies of mucosal immunity and microbial host cell interaction have traditionally relied on animal models and in vitro tissue culture using immortalized cancer cell lines, which yield nonphysiological and often unreliable results. Herein, we report the development and characterization of an ex vivo enteroid-PMN coculture consisting of normal human intestinal epithelium and a mechanistic interrogation of PMN and epithelial cell interaction and function in the context of Shigella infection. We demonstrated tissue-driven phenotypic and functional adaptation of PMN and a coordinated epithelial cell and PMN response to Shigella, a primary cause of dysentery in young children in the developing world.


Asunto(s)
Disentería Bacilar , Shigella , Animales , Células Cultivadas , Preescolar , Técnicas de Cocultivo , Disentería Bacilar/metabolismo , Células Epiteliales/metabolismo , Humanos , Interleucina-8 , Mucosa Intestinal/metabolismo , Neutrófilos , Shigella/metabolismo
3.
Cell Host Microbe ; 30(2): 216-231.e5, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35143768

RESUMEN

Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.


Asunto(s)
Toxinas Bacterianas , Virus , Toxinas Bacterianas/metabolismo , Polaridad Celular/fisiología , Endosomas/metabolismo , Células Epiteliales , Proteína Quinasa C/metabolismo , Virus/metabolismo
4.
Cell Rep ; 38(3): 110283, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045294

RESUMEN

Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mucosa Intestinal/fisiología , Organoides/fisiología , Neoplasias del Colon , Metilación de ADN , Humanos , Enfermedades Inflamatorias del Intestino , Regeneración/fisiología , Células Madre/fisiología
5.
Cell Mol Gastroenterol Hepatol ; 13(1): 219-232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34418586

RESUMEN

BACKGROUND & AIMS: One of the features of ulcerative colitis (UC) is a defect in the protective mucus layer. This has been attributed to a reduced number of goblet cells (GCs). However, it is not known whether abnormal GC mucus secretion also contributes to the reduced mucus layer. Our aims were to investigate whether GC secretion was abnormal in UC and exists as a long-term effect of chronic inflammation. METHODS: Colonoids were established from intestinal stem cells of healthy subjects (HS) and patients with UC. Colonoids were maintained as undifferentiated (UD) or induced to differentiate (DF) and studied as three-dimensional or monolayers on Transwell filters. Total RNA was extracted for quantitative real-time polymerase chain reaction analysis. Carbachol and prostaglandin E2 mediated mucin stimulation was examined by MUC2 IF/confocal microscopy and transmission electron microscopy. RESULTS: Colonoids from UC patients can be propagated over many passages; however, they exhibit a reduced rate of growth and transepithelial electrical resistance compared with HS. Differentiated UC colonoid monolayers form a thin and non-continuous mucus layer. UC colonoids have increased expression of secretory lineage markers ATOH1 and SPDEF, along with MUC2 positive GCs, but failed to secrete mucin in response to the cholinergic agonist carbachol and prostaglandin E2, which caused increased secretion in HS. Exposure to tumor necrosis factor α (5 days) reduced the number of GCs, with a greater percentage decrease in UC colonoids compared with HS. CONCLUSIONS: Chronic inflammation in UC causes long-term changes in GCs, leading to abnormal mucus secretion. This continued defect in GC mucus secretion may contribute to the recurrence in UC.


Asunto(s)
Colitis Ulcerosa , Colitis Ulcerosa/patología , Células Caliciformes/patología , Humanos , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
6.
Mol Metab ; 44: 101129, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33246140

RESUMEN

OBJECTIVE: The mechanisms behind the efficacy of bariatric surgery (BS) for treating obesity and type 2 diabetes, particularly with respect to the influence of the small bowel, remain poorly understood. In vitro and animal models are suboptimal with respect to their ability to replicate the human intestinal epithelium under conditions induced by obesity. Human enteroids have the potential to accelerate the development of less invasive anti-obesity therapeutics if they can recapitulate the pathophysiology of obesity. Our aim was to determine whether adult stem cell-derived enteroids preserve obesity-characteristic patient-specific abnormalities in carbohydrate absorption and metabolism. METHODS: We established 24 enteroid lines representing 19 lean, overweight, or morbidly obese patients, including post-BS cases. Dietary glucose absorption and gluconeogenesis in enteroids were measured. The expression of carbohydrate transporters and gluconeogenic enzymes was assessed and a pharmacological approach was used to dissect the specific contribution of each transporter or enzyme to carbohydrate absorption and metabolism, respectively. RESULTS: Four phenotypes representing the relationship between patients' BMI and intestinal dietary sugar absorption were found, suggesting that human enteroids retain obese patient phenotype heterogeneity. Intestinal glucose absorption and gluconeogenesis were significantly elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2, whereas elevated gluconeogenesis was related to increased expression of GLUT5, PEPCK1, and G6Pase. CONCLUSIONS: Obesity phenotypes preserved in human enteroids provide a mechanistic link to aberrant dietary carbohydrate absorption and metabolism. Enteroids can be used as a preclinical platform to understand the pathophysiology of obesity, study the heterogeneity of obesity mechanisms, and identify novel therapeutics.


Asunto(s)
Gluconeogénesis/fisiología , Glucosa/metabolismo , Intestino Delgado/metabolismo , Obesidad Mórbida/metabolismo , Fenotipo , Células Madre/metabolismo , Animales , Cirugía Bariátrica , Diabetes Mellitus Tipo 2/metabolismo , Carbohidratos de la Dieta/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo
7.
Curr Protoc Immunol ; 131(1): e113, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33166041

RESUMEN

Human intestinal enteroids derived from adult stem cells offer a relevant ex vivo system to study biological processes of the human gut. They recreate cellular and functional features of the intestinal epithelium of the small intestine (enteroids) or colon (colonoids) albeit limited by the lack of associated cell types that help maintain tissue homeostasis and respond to external challenges. In the gut, innate immune cells interact with the epithelium, support barrier function, and deploy effector functions. We have established a co-culture system of enteroid/colonoid monolayers and underlying macrophages and polymorphonuclear neutrophils to recapitulate the cellular framework of the human intestinal epithelial niche. Enteroids are generated from biopsies or resected tissue from any segment of the human gut and maintained in long-term cultures as three-dimensional structures through supplementation of stem cell growth factors. Immune cells are isolated from fresh human whole blood or frozen peripheral blood mononuclear cells (PBMC). Monocytes from PBMC are differentiated into macrophages by cytokine stimulation prior to co-culture. The methods are divided into the two main components of the model: (1) generating enteroid/colonoid monolayers and isolating immune cells and (2) assembly of enteroid/colonoid-immune cell co-cultures with separate apical and basolateral compartments. Co-cultures containing macrophages can be maintained for 48 hr while those involving neutrophils, due to their shorter life span, remain viable for 4 hr. Enteroid-immune co-cultures enable multiple outcome measures, including transepithelial resistance, production of cytokines/chemokines, phenotypic analysis of immune cells, tissue immunofluorescence imaging, protein or mRNA expression, antigen or microbe uptake, and other cellular functions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Seeding enteroid fragments onto Transwells for monolayer formation Alternate Protocol: Seeding enteroid fragments for monolayer formation using trituration Basic Protocol 2: Isolation of monocytes and derivation of immune cells from human peripheral blood Basic Protocol 3: Isolation of neutrophils from human peripheral blood Basic Protocol 4: Assembly of enteroid/macrophage or enteroid/neutrophil co-culture.


Asunto(s)
Células Madre Adultas/citología , Colon/citología , Enterocitos/citología , Inmunoensayo/métodos , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Animales , Técnicas de Cocultivo , Colon/inmunología , Citocinas/metabolismo , Humanos , Inmunidad Innata , Mucosa Intestinal/citología , Ratones
8.
FASEB J ; 34(12): 15922-15945, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047400

RESUMEN

Enterotoxigenic Bacteroides fragilis (ETBF) is a commensal bacterium of great importance to human health due to its ability to induce colitis and cause colon tumor formation in mice through the production of B. fragilis toxin (BFT). The formation of tumors is dependent on a pro-inflammatory signaling cascade, which begins with the disruption of epithelial barrier integrity through cleavage of E-cadherin. Here, we show that BFT increases levels of glucosylceramide, a vital intestinal sphingolipid, both in mice and in colon organoids (colonoids) generated from the distal colons of mice. When colonoids are treated with BFT in the presence of an inhibitor of glucosylceramide synthase (GCS), the enzyme responsible for generating glucosylceramide, colonoids become highly permeable, lose structural integrity, and eventually burst, releasing their contents into the extracellular matrix. By increasing glucosylceramide levels in colonoids via an inhibitor of glucocerebrosidase (GBA, the enzyme that degrades glucosylceramide), colonoid permeability was reduced, and bursting was significantly decreased. In the presence of BFT, pharmacological inhibition of GCS caused levels of tight junction protein 1 (TJP1) to decrease. However, when GBA was inhibited, TJP1 levels remained stable, suggesting that BFT-induced production of glucosylceramide helps to stabilize tight junctions. Taken together, our data demonstrate a glucosylceramide-dependent mechanism by which the colon epithelium responds to BFT.


Asunto(s)
Toxinas Bacterianas/toxicidad , Bacteroides fragilis/metabolismo , Colon/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glucosilceramidas/metabolismo , Metaloendopeptidasas/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Células Epiteliales/metabolismo , Glucosilceramidasa/metabolismo , Glucosiltransferasas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
9.
Infect Immun ; 88(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32631917

RESUMEN

Symptomatic and asymptomatic infection with the diarrheal pathogen enteroaggregative Escherichia coli (EAEC) is associated with growth faltering in children in developing settings. The mechanism of this association is unknown, emphasizing a need for better understanding of the interactions between EAEC and the human gastrointestinal mucosa. In this study, we investigated the role of the aggregative adherence fimbriae II (AAF/II) in EAEC adherence and pathogenesis using human colonoids and duodenal enteroids. We found that a null mutant in aafA, the major subunit of AAF/II, adhered significantly less than wild-type (WT) EAEC strain 042, and adherence was restored in a complemented strain. Immunofluorescence confocal microscopy of differentiated colonoids, which produce an intact mucus layer comprised of the secreted mucin MUC2, revealed bacteria at the epithelial surface and within the MUC2 layer. The WT strain adhered to the epithelial surface, whereas the aafA deletion strain remained within the MUC2 layer, suggesting that the presence or absence of AAF/II determines both the abundance and location of EAEC adherence. In order to determine the consequences of EAEC adherence on epithelial barrier integrity, colonoid monolayers were exposed to EAEC constructs expressing or lacking aafA Colonoids infected with WT EAEC had significantly decreased epithelial resistance, an effect that required AAF/II, suggesting that binding of EAEC to the epithelium is necessary to impair barrier function. In summary, we show that production of AAF/II is critical for adherence and barrier disruption in human colonoids, suggesting a role for this virulence factor in EAEC colonization of the gastrointestinal mucosa.


Asunto(s)
Adhesinas de Escherichia coli/inmunología , Células Epiteliales/microbiología , Escherichia coli/inmunología , Fimbrias Bacterianas/inmunología , Interacciones Microbiota-Huesped/inmunología , Organoides/microbiología , Adhesinas de Escherichia coli/genética , Adhesión Bacteriana , Colon/inmunología , Colon/metabolismo , Colon/microbiología , Recuento de Colonia Microbiana , Duodeno/inmunología , Duodeno/metabolismo , Duodeno/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Fimbrias Bacterianas/genética , Eliminación de Gen , Regulación de la Expresión Génica , Prueba de Complementación Genética , Interacciones Microbiota-Huesped/genética , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucina 2/genética , Mucina 2/inmunología , Organoides/inmunología , Organoides/metabolismo , Transducción de Señal
10.
Toxins (Basel) ; 10(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200426

RESUMEN

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


Asunto(s)
Toxinas Bacterianas/toxicidad , Colon/efectos de los fármacos , Proteínas de Escherichia coli/toxicidad , Transporte Iónico/efectos de los fármacos , Organoides/efectos de los fármacos , Serina Endopeptidasas/toxicidad , Colon/fisiología , Escherichia coli Enterohemorrágica , Humanos , Organoides/fisiología
11.
Sci Rep ; 7: 45270, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28345602

RESUMEN

Integration of the intestinal epithelium and the mucosal immune system is critical for gut homeostasis. The intestinal epithelium is a functional barrier that secludes luminal content, senses changes in the gut microenvironment, and releases immune regulators that signal underlying immune cells. However, interactions between epithelial and innate immune cells to maintain barrier integrity and prevent infection are complex and poorly understood. We developed and characterized a primary human macrophage-enteroid co-culture model for in-depth studies of epithelial and macrophage interactions. Human intestinal stem cell-derived enteroid monolayers co-cultured with human monocyte-derived macrophages were used to evaluate barrier function, cytokine secretion, and protein expression under basal conditions and following bacterial infection. Macrophages enhanced barrier function and maturity of enteroid monolayers as indicated by increased transepithelial electrical resistance and cell height. Communication between the epithelium and macrophages was demonstrated through morphological changes and cytokine production. Intraepithelial macrophage projections, efficient phagocytosis, and stabilized enteroid barrier function revealed a coordinated response to enterotoxigenic and enteropathogenic E. coli infections. In summary, we have established the first primary human macrophage-enteroid co-culture system, defined conditions that allow for a practical and reproducible culture model, and demonstrated its suitability to study gut physiology and host responses to enteric pathogens.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Epiteliales/fisiología , Interacciones Huésped-Patógeno , Mucosa Intestinal/inmunología , Macrófagos/fisiología , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Comunicación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Modelos Biológicos
12.
Transl Res ; 182: 14-26.e4, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27815136

RESUMEN

Constipation is a common condition for which current treatments can have limited efficacy. By high-throughput screening, we recently identified a phenylquinoxalinone activator of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel that stimulated intestinal fluid secretion and normalized stool output in a mouse model of opioid-induced constipation. Here, we report phenylquinoxalinone structure-activity analysis, mechanism of action, animal efficacy data in acute and chronic models of constipation, and functional data in ex vivo primary cultured human enterocytes. Structure-activity analysis was done on 175 phenylquinoxalinone analogs, including 15 synthesized compounds. The most potent compound, CFTRact-J027, activated CFTR with EC50 ∼ 200 nM, with patch-clamp analysis showing a linear CFTR current-voltage relationship with direct CFTR activation. CFTRact-J027 corrected reduced stool output and hydration in a mouse model of acute constipation produced by scopolamine and in a chronically constipated mouse strain (C3H/HeJ). Direct comparison with the approved prosecretory drugs lubiprostone and linaclotide showed substantially greater intestinal fluid secretion with CFTRact-J027, as well as greater efficacy in a constipation model. As evidence to support efficacy in human constipation, CFTRact-J027 increased transepithelial fluid transport in enteroids generated from normal human small intestine. Also, CFTRact-J027 was rapidly metabolized in vitro in human hepatic microsomes, suggesting minimal systemic exposure upon oral administration. These data establish structure-activity and mechanistic data for phenylquinoxalinone CFTR activators, and support their potential efficacy in human constipation.


Asunto(s)
Líquidos Corporales/metabolismo , Estreñimiento/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quinoxalinas/uso terapéutico , Enfermedad Aguda , Animales , Líquidos Corporales/efectos de los fármacos , Línea Celular , Enfermedad Crónica , Estreñimiento/genética , Estreñimiento/patología , Modelos Animales de Enfermedad , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Femenino , Ácido Gástrico/metabolismo , Humanos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Lubiprostona/farmacología , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Técnicas de Placa-Clamp , Péptidos/farmacología , Quinoxalinas/síntesis química , Quinoxalinas/química , Quinoxalinas/farmacología , Ratas , Escopolamina/farmacología , Relación Estructura-Actividad
13.
FASEB J ; 31(2): 751-760, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27871064

RESUMEN

Secretory diarrheas caused by bacterial enterotoxins, including cholera and traveler's diarrhea, remain a major global health problem. Inappropriate activation of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel occurs in these diarrheas. We previously reported that the benzopyrimido-pyrrolo-oxazinedione (R)-BPO-27 inhibits CFTR chloride conductance with low-nanomolar potency. Here, we demonstrate using experimental mouse models and human enterocyte cultures the potential utility of (R)-BPO-27 for treatment of secretory diarrheas caused by cholera and Escherichia coli enterotoxins. (R)-BPO-27 fully blocked CFTR chloride conductance in epithelial cell cultures and intestine after cAMP agonists, cholera toxin, or heat-stable enterotoxin of E. coli (STa toxin), with IC50 down to ∼5 nM. (R)-BPO-27 prevented cholera toxin and STa toxin-induced fluid accumulation in small intestinal loops, with IC50 down to 0.1 mg/kg. (R)-BPO-27 did not impair intestinal fluid absorption or inhibit other major intestinal transporters. Pharmacokinetics in mice showed >90% oral bioavailability with sustained therapeutic serum levels for >4 h without the significant toxicity seen with 7-d administration at 5 mg/kg/d. As evidence to support efficacy in human diarrheas, (R)-BPO-27 blocked fluid secretion in primary cultures of enteroids from human small intestine and anion current in enteroid monolayers. These studies support the potential utility of (R)-BPO-27 for therapy of CFTR-mediated secretory diarrheas.-Cil, O., Phuan, P.-W., Gillespie, A. M., Lee, S., Tradtrantip, L., Yin, J., Tse, M., Zachos, N. C., Lin, R., Donowitz, M., Verkman, A. S. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Oxazinas/farmacología , Pirimidinonas/farmacología , Pirroles/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Intestinos/efectos de los fármacos , Ratones , Estructura Molecular , Oxazinas/síntesis química , Pirimidinonas/síntesis química , Pirroles/síntesis química
14.
Nat Rev Gastroenterol Hepatol ; 13(11): 633-642, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27677718

RESUMEN

The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5+ intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.


Asunto(s)
Intestino Grueso/fisiología , Intestino Delgado/fisiología , Modelos Biológicos , Organoides/fisiología , Transporte Biológico/fisiología , Predicción , Enfermedades Gastrointestinales/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Infecciones/fisiopatología
15.
J Biol Chem ; 291(8): 3759-66, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26677228

RESUMEN

Identification of Lgr5 as the intestinal stem cell marker as well as the growth factors necessary to replicate adult intestinal stem cell division has led to the establishment of the methods to generate "indefinite" ex vivo primary intestinal epithelial cultures, termed "mini-intestines." Primary cultures developed from isolated intestinal crypts or stem cells (termed enteroids/colonoids) and from inducible pluripotent stem cells (termed intestinal organoids) are being applied to study human intestinal physiology and pathophysiology with great expectations for translational applications, including regenerative medicine. Here we discuss the physiologic properties of these cultures, their current use in understanding diarrhea-causing host-pathogen interactions, and potential future applications.


Asunto(s)
Células Madre Adultas/metabolismo , Antígenos de Diferenciación/metabolismo , Diarrea , Mucosa Intestinal , Intestinos , Organoides , Receptores Acoplados a Proteínas G/metabolismo , Células Madre Adultas/patología , Diarrea/metabolismo , Diarrea/patología , Diarrea/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Mucosa Intestinal/metabolismo , Intestinos/patología , Intestinos/fisiopatología , Organoides/metabolismo , Organoides/patología , Organoides/fisiopatología
16.
Gastroenterology ; 150(3): 638-649.e8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26677983

RESUMEN

BACKGROUND & AIMS: Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na(+) absorption and stimulated fluid and anion secretion under basal and regulated conditions in undifferentiated and differentiated cultures to show their functional relevance to ion transport physiology and pathophysiology. METHODS: Human intestinal tissue specimens were obtained from an endoscopic biopsy or surgical resections performed at Johns Hopkins Hospital. Crypts were isolated, enteroids were propagated in culture, induced to undergo differentiation, and transduced with lentiviral vectors. Crypt markers, surface cell enzymes, and membrane ion transporters were characterized using quantitative reverse-transcription polymerase chain reaction, immunoblot, or immunofluorescence analyses. We used multiphoton and time-lapse confocal microscopy to monitor intracellular pH and luminal dilatation in enteroids under basal and regulated conditions. RESULTS: Enteroids differentiated upon withdrawal of WNT3A, yielding decreased crypt markers and increased villus-like characteristics. Na(+)/H(+) exchanger 3 activity was similar in undifferentiated and differentiated enteroids, and was affected by known inhibitors, second messengers, and bacterial enterotoxins. Forskolin-induced swelling was completely dependent on cystic fibrosis transmembrane conductance regulator and partially dependent on Na(+)/H(+) exchanger 3 and Na(+)/K(+)/2Cl(-) cotransporter 1 inhibition in undifferentiated and differentiated enteroids. Increases in cyclic adenosine monophosphate with forskolin caused enteroid intracellular acidification in HCO3(-)-free buffer. Cyclic adenosine monophosphate-induced enteroid intracellular pH acidification as part of duodenal HCO3(-) secretion appears to require cystic fibrosis transmembrane conductance regulator and electrogenic Na(+)/HCO3(-) cotransporter 1. CONCLUSIONS: Undifferentiated or crypt-like, and differentiated or villus-like, human enteroids represent distinct points along the crypt-villus axis; they can be used to characterize electrolyte transport processes along the vertical axis of the small intestine. The duodenal enteroid model showed that electrogenic Na(+)/HCO3(-) cotransporter 1 might be a target in the intestinal mucosa for treatment of secretory diarrheas.


Asunto(s)
Diferenciación Celular , Intestino Delgado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sodio/metabolismo , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Secreciones Intestinales/metabolismo , Intestino Delgado/patología , Intestino Delgado/fisiopatología , Transporte Iónico , Cinética , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Microscopía de Fluorescencia por Excitación Multifotónica , Microscopía por Video , Imagen de Lapso de Tiempo , Técnicas de Cultivo de Tejidos , Transducción Genética , Transfección
17.
Am J Physiol Gastrointest Liver Physiol ; 308(8): G664-77, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25573173

RESUMEN

Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.


Asunto(s)
Digestión , Absorción Intestinal , Mucosa Intestinal/fisiología , Mucosa Intestinal/trasplante , Intestino Delgado/fisiología , Intestino Delgado/trasplante , Ingeniería de Tejidos/métodos , Animales , Acuaporinas/metabolismo , Transporte Biológico , Diferenciación Celular , Polaridad Celular , Proliferación Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/fisiología , Células Epiteliales/trasplante , Células Epiteliales/ultraestructura , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura , Intestino Delgado/metabolismo , Intestino Delgado/ultraestructura , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Organoides , Intercambiadores de Sodio-Hidrógeno/metabolismo , Uniones Estrechas/fisiología , Uniones Estrechas/ultraestructura , Factores de Tiempo , Técnicas de Cultivo de Tejidos
18.
Clin Gastroenterol Hepatol ; 12(1): 27-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184676

RESUMEN

Diarrheal diseases remain a leading cause of morbidity and mortality for children in developing countries, while representing an important cause of morbidity worldwide. The World Health Organization recommended that low osmolarity oral rehydration solutions plus zinc save lives in patients with acute diarrhea, but there are no approved, safe drugs that have been shown to be effective against most causes of acute diarrhea. Identification of abnormalities in electrolyte handling by the intestine in diarrhea, including increased intestinal anion secretion and reduced Na(+) absorption, suggest a number of potential drug targets. This is based on the view that successful drug therapy for diarrhea will result from correcting the abnormalities in electrolyte transport that are pathophysiologic for diarrhea. We review the molecular mechanisms of physiologic regulation of intestinal ion transport and changes that occur in diarrhea and the status of drugs being developed to correct the transport abnormalities in Na(+) absorption that occur in diarrhea. Mechanisms of Cl(-) secretion and approaches to anti-Cl(-) secretory therapies of diarrhea are discussed in a companion review.


Asunto(s)
Diarrea/tratamiento farmacológico , Electrólitos/metabolismo , Sodio/metabolismo , Equilibrio Hidroelectrolítico/efectos de los fármacos , Humanos , Medicina Molecular/tendencias
19.
Am J Physiol Cell Physiol ; 305(3): C266-75, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23703528

RESUMEN

Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.


Asunto(s)
Analgésicos no Narcóticos/farmacología , Carbacol/farmacología , Fosfolipasa C gamma/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Células CACO-2 , Calcio/química , Calcio/metabolismo , Línea Celular Tumoral , Activación Enzimática , Genes src , Humanos , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Pirimidinas/farmacología , Transducción de Señal , Intercambiador 3 de Sodio-Hidrógeno
20.
J Biol Chem ; 287(16): 13442-56, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371496

RESUMEN

The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Microvellosidades/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Células CACO-2 , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Mutagénesis/fisiología , Fosforilación/fisiología , Estructura Terciaria de Proteína , Protones , Conejos , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA