Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 32(11): 2644-51, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22982464

RESUMEN

OBJECTIVE: Vasa vasorum are angiogenic in advanced stages of human atherosclerosis and hypercholesterolemic mouse models. Fibroblast growth factor-2 (FGF-2) is the predominant angiogenic growth factor in the adventitia and plaque of hypercholesterolemic low-density lipoprotein receptor-deficient/apolipoprotein B(100/100) mice (DKO). FGF-2 seems to play a role in the formation of a distinct vasa vasorum network. This study examined the vasa vasorum structure and its relationship to FGF-2. METHODS AND RESULTS: DKO mice treated with saline, antiangiogenic recombinant plasminogen activator inhibitor-1(23) (rPAI-1(23)), or soluble FGF receptor 1 were perfused with fluorescein-labeled Lycopersicon esculentum lectin. Confocal images of FGF-2-probed descending aorta adventitia show that angiogenic vasa vasorum form a plexus-like network in saline-treated DKO similar to the FGF-2 pattern of distribution. Mice treated with rPAI-1(23) and soluble FGF receptor 1 lack a plexus; FGF-2 and vasa vasorum density and area are significantly reduced. A perlecan/FGF-2 complex is critical for plexus stability. Excess plasmin produced in rPAI-1(23)-treated DKO mice degrades perlecan and destabilizes the plexus. Plasmin activity and plaque size measured in DKO and DKO/plasminogen activator inhibitor-1(-)(/-) mice demonstrate that elevated plasmin activity contributes to reduced plaque size. CONCLUSIONS: An FGF-2/perlecan complex is required for vasa vasorum plexus stability. Elevated plasmin activity plays a significant inhibitory role in vasa vasorum plexus and plaque development.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipercolesterolemia/metabolismo , Neovascularización Patológica , Vasa Vasorum/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/patología , Enfermedades de la Aorta/tratamiento farmacológico , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteína B-100 , Apolipoproteínas B/deficiencia , Apolipoproteínas B/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , Colesterol en la Dieta , Modelos Animales de Enfermedad , Fibrinolisina/metabolismo , Técnicas de Transferencia de Gen , Proteoglicanos de Heparán Sulfato/metabolismo , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Placa Aterosclerótica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Rotura Espontánea , Vasa Vasorum/efectos de los fármacos , Vasa Vasorum/patología
2.
Eur J Radiol ; 70(2): 305-11, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19304428

RESUMEN

Vascular imaging of angiogenesis in mouse models of disease requires multi modal imaging hardware capable of targeting both structure and function at different physical scales. The three dimensional (3D) structure and function vascular information allows for accurate differentiation between biological processes. For example, image analysis of vessel development in angiogenesis vs. arteriogenesis enables more accurate detection of biological variation between subjects and more robust and reliable diagnosis of disease. In the recent years a number of micro imaging modalities have emerged in the field as preferred means for this purpose. They provide 3D volumetric data suitable for analysis, quantification, validation, and visualization of results in animal models. This review highlights the capabilities of microCT, ultrasound and microPET for multimodal imaging of angiogenesis and molecular vascular targets in a mouse model of tumor angiogenesis. The basic principles of the imaging modalities are described and experimental results are presented.


Asunto(s)
Angiografía/tendencias , Diagnóstico por Imagen/tendencias , Modelos Animales de Enfermedad , Técnicas de Sonda Molecular/tendencias , Neoplasias/diagnóstico , Neovascularización Patológica/diagnóstico , Animales , Humanos , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/complicaciones , Neovascularización Patológica/complicaciones
3.
Circ Res ; 104(3): 337-45, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19122176

RESUMEN

Plaque vascularity has been implicated in its growth and stability. However, there is a paucity of information regarding the origin of plaque vasculature and the role of vasa vasorum in plaque growth. To inhibit growth of vasa vasorum in atherogenic mice and assess its effect on plaque growth, we used a truncated plasminogen activator inhibitor (PAI)-1 protein, rPAI-1(23), that has significant antiangiogenic activity. Female LDLR(-/-)ApoB-48-deficient mice fed Paigen's diet without cholate for 20 weeks received rPAI-1(23) treatment (n=21) for the last 6 weeks. Plaque size and vasa vasorum density were compared to 2 controls: mice fed Paigen's diet and treated with saline for the last 6 weeks (n=16) and mice fed Paigen's diet until the onset of treatment (n=14). The rPAI-1(23) treatment significantly reduced plaque area and plaque cholesterol in the descending aorta and plaque area in the innominate artery. Measurements of reconstructed confocal microscopy images of vasa vasorum demonstrate that rPAI-1(23) treatment decreased vasa vasorum area and length, which was supported by microCT images. Confocal images provide evidence for vascularized plaque in the saline-treated group but not in rPAI-1(23)-treated mice. The increased vessel density in saline-treated mice is attributable, in part, to upregulated fibroblast growth factor-2 expression, which is inhibited by rPAI-1(23). In conclusion, rPAI-1(23) inhibits growth of vasa vasorum, as well as vessels within the adjacent plaque and vessel wall, through inhibition of fibroblast growth factor-2, leading to reduced plaque growth in atherogenic female LDLR(-/-)ApoB-48-deficient mice.


Asunto(s)
Inhibidores de la Angiogénesis/fisiología , Aterosclerosis/prevención & control , Inhibidor 1 de Activador Plasminogénico/fisiología , Vasa Vasorum/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Animales , Apolipoproteína B-48/genética , Arterias/patología , Aterosclerosis/patología , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Ratones , Ratones Endogámicos , Ratones Mutantes , Microscopía Confocal , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/fisiología , Inhibidor 1 de Activador Plasminogénico/farmacología , Receptores de LDL/genética , Proteínas Recombinantes/farmacología , Vasa Vasorum/crecimiento & desarrollo , Vasa Vasorum/patología , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA