Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 14(12): e0226576, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31869349

RESUMEN

Here we present a study of the thermal inactivation and the refolding of the proteins in Gram positive Bacillus subtilis. To enable use of bacterial luciferases as the models for protein thermal inactivation and refolding in B. subtilis cells, we developed a variety of bright luminescent B. subtilis strains which express luxAB genes encoding luciferases of differing thermolability. The kinetics of the thermal inactivation and the refolding of luciferases from Photorhabdus luminescens and Photobacterium leiognathi were compared in Gram negative and Gram positive bacteria. In B. subtilis cells, these luciferases are substantially more thermostable than in Escherichia coli. Thermal inactivation of the thermostable luciferase P. luminescens in B. subtilis at 48.5°Ð¡ behaves as a first-order reaction. In E.coli, the first order rate constant (Kt) of the thermal inactivation of luciferase in E. coli exceeds that observed in B. subtilis cells 2.9 times. Incubation time dependence curves for the thermal inactivation of the thermolabile luciferase of P. leiognathi luciferase in the cells of E. coli and B. subtilis may be described by first and third order kinetics, respectively. Here we shown that the levels and the rates of refolding of thermally inactivated luciferases in B. subtilis cells are substantially lower that that observed in E. coli. In dnaK-negative strains of B. subtilis, both the rates of thermal inactivation and the efficiency of refolding are similar to that observed in wild-type strains. These experiments point that the role that DnaKJE plays in thermostability of luciferases may be limited to bacterial species resembling E. coli.


Asunto(s)
Bacillus subtilis/enzimología , Desinfección/métodos , Escherichia coli/enzimología , Calor , Luciferasas de la Bacteria/química , Replegamiento Proteico , Adenosina Trifosfatasas/análisis , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/análisis , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/análisis , Proteínas HSP70 de Choque Térmico/análisis , Calor/uso terapéutico , Cinética , Luciferasas de la Bacteria/genética , Luciferasas de la Bacteria/metabolismo , Viabilidad Microbiana , Chaperonas Moleculares/análisis , Organismos Modificados Genéticamente
2.
Proc Natl Acad Sci U S A ; 114(23): 6022-6027, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533366

RESUMEN

Endogenous hydrogen sulfide (H2S) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous H2S in Escherichia coli Cellular resistance to H2O2 strongly depends on the activity of mstA, a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders ∆mstA cells hypersensitive to H2O2 Conversely, induction of chromosomal mstA from a strong pLtetO-1 promoter (P tet -mstA) renders ∆fur cells fully resistant to H2O2 Furthermore, the endogenous level of H2S is reduced in ∆fur or ∆sodA ∆sodB cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived H2S protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of H2S. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, H2S production, and oxidative stress, in which 3MST protects E. coli against oxidative stress via l-cysteine utilization and H2S-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Sulfurtransferasas/metabolismo , Antibacterianos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Daño del ADN/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sulfurtransferasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA