Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Sci (Weinh) ; 10(18): e2207650, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37083239

RESUMEN

Novel promising strategies for combination with sorafenib are urgently needed to enhance its clinical benefit and overcome toxicity in hepatocellular carcinoma (HCC). the molecular and immunomodulatory antitumor effects of sorafenib alone and in combination with the new immunotherapeutic agent R848 are presented. Syngeneic HCC mouse model is presented to explore the antitumor effect and safety of three sorafenib doses alone, R848 alone, or their combination in vivo. R848 significantly enhances the sorafenib antitumor activity at a low subclinical dose with no obvious toxic side effects. Furthermore, the combination therapy reprograms the tumor immune microenvironment by increasing antitumor macrophages and neutrophils and preventing immunosuppressive signaling. Combination treatment promotes classical M1 macrophage-to-FTH1high M1 macrophage transition. The close interaction between neutrophils/classical M1 macrophages and dendritic cells promotes tumor antigen presentation to T cells, inducing cytotoxic CD8+ T cell-mediated antitumor immunity. Additionally, low-dose sorafenib, alone or combined with R848, normalizes the tumor vasculature, generating a positive feedback loop to support the antitumor immune environment. Therefore, the combination therapy reprograms the HCC immune microenvironment and normalizes the vasculature, improving the therapeutic benefit of low-dose sorafenib and minimizing toxicity, suggesting a promising novel immunotherapy (R848) and targeted therapy (tyrosine kinase inhibitors) combination strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/farmacología , Niacinamida/farmacología , Niacinamida/uso terapéutico , Microambiente Tumoral
2.
Neural Plast ; 2022: 1478048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36300173

RESUMEN

Background: Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA. Methods: We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a Q-learning algorithm. Results: Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal Q-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87. Conclusion: The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.


Asunto(s)
Ataque Isquémico Transitorio , Sustancia Blanca , Humanos , Mapeo Encefálico/métodos , Ataque Isquémico Transitorio/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
3.
Quant Imaging Med Surg ; 12(8): 4120-4134, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35919063

RESUMEN

Background: Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study brain functional alteration, but there have been no reports of research regarding the application of rs-fMRI in intracranial tuberculosis. The purpose of this prospective, cross-sectional study was to investigate spontaneous neural activity at different frequency bands in patients with intracranial tuberculosis using rs-fMRI with amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) methods. Methods: The rs-fMRI data of 31 patients with intracranial tuberculosis and 30 gender-, age-, and education-matched healthy controls (HCs) were included. The ALFF and fALFF values in the conventional frequency band (0.01-0.08 Hz) and 2 sub-frequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) were calculated and compared between the groups. The resultant T-maps were corrected using the Gaussian random field (GRF) theory (voxel P<0.01, cluster P<0.05). Correlations between the ALFF and fALFF values and neurocognitive scores were assessed. Results: Compared with the HCs, patients with intracranial tuberculosis showed decreased ALFF in the right paracentral lobule (T=-4.69) in the conventional frequency band, in the right supplementary motor area (T=-4.85) in the slow-4 band, and in the left supplementary motor area (T=-3.76) in the slow-5 band. Compared to the slow-5 band, the voxels with decreased ALFF were spatially more extensive in the slow-4 band. Compared with HCs, patients with intracranial tuberculosis showed decreased fALFF in the opercular parts of the right inferior frontal gyrus (T=-4.50) and the left inferior parietal lobe (T=-4.86) and increased fALFF in the left inferior cerebellum (T=5.84) in the conventional frequency band. In the slow-4 band, fALFF decreased in the opercular parts of the right inferior frontal gyrus (T=-5.29) and right precuneus (T=-4.34). In the slow-5 band, fALFF decreased in the left middle occipital gyrus (T=-4.65) and right middle frontal gyrus (T=-5.05). Conclusions: Patients with intracranial tuberculosis showed abnormal intrinsic brain activity at different frequency bands, and ALFF abnormalities in different brain regions could be better detected in the slow-4 band. This preliminary study might provide new insights into understanding the pathophysiological mechanism in intracranial tuberculosis.

4.
Cell Death Dis ; 13(5): 490, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35606363

RESUMEN

Evolutionarily conserved heat shock proteins are involved in the heat shock response of cells in response to changes in the external environment. In normal tissues, heat shock proteins can help cells survive in a rapidly changing environment. Likewise, in malignant tumors heat shock proteins may help tumor cells cope with external stresses as well as the stress of treatment. In this way they become accomplices of malignant tumors. Here we demonstrated for the first time that high expression of DNAJC24 (a heat shock protein) shortens survival in patients with HCC by immunohistochemical staining of 167 paired hepatocellular carcinomas and paraneoplastic tissues as well as data from public databases. In vitro experiments demonstrated that stimuli such as hypoxia, starvation and heat could upregulate DNAJC24 expression in HCC cells through transcriptional regulation of HSF2, and high expression of DNAJC24 in HCC cells could promote the proliferation and motility of HCC cells. In addition, we also verified that targeting DNAJC24 under normal culture conditions can affect the proliferation and autophagy of HCC cells by interfering with ammonia metabolism, thereby inhibiting the malignant progression of HCC. Overall, we suggested that DNAJC24 may become a new target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Amoníaco/metabolismo , Autofagia , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/patología
5.
Cell Death Dis ; 12(6): 552, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050137

RESUMEN

Some studies have reported that activated ribosomes are positively associated with malignant tumors, especially in hepatocellular carcinoma (HCC). The RNA-binding protein PNO1 is a critical ribosome rarely reported in human tumors. This study aimed to explore the molecular mechanisms of PNO1 in HCC. Using 150 formalin-fixed and paraffin-embedded samples and 8 fresh samples, we found high PNO1 expression in HCC tumor tissues through Western blotting and RT-PCR. Moreover, the higher PNO1 expression was associated with poor HCC prognosis patients. In vitro and in vivo experiments indicated that PNO1 overexpression promoted the proliferation and depressed the apoptosis of HCC cells. High PNO1 expression also increased the autophagy of HCC cells. The molecular mechanisms underlying PNO1 were examined by RNA-seq analysis and a series of functional experiments. Results showed that PNO1 promoted HCC progression through the MAPK signaling pathway. Therefore, PNO1 was overexpressed in HCC, promoted autophagy, and inhibited the apoptosis of HCC cells through the MAPK signaling pathway.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Unión al ARN/metabolismo , Apoptosis , Autofagia , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Transducción de Señal
6.
Mol Metab ; 51: 101230, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33823318

RESUMEN

OBJECTIVE: Adaptive rewiring of cancer energy metabolism has received increasing attention. By binding with LDLs, LDLRs make most of the circulating cholesterol available for cells to utilize. However, it remains unclear how LDLR works in HCC development by affecting cholesterol metabolism. METHODS: Database analyses and immunohistochemical staining were used to identify the clinical significance of LDLR in HCC. A transcriptome analysis was used to reveal the mechanism of LDLR aberration in HCC progression. A liver orthotopic transplantation model was used to evaluate the role of LDLR in HCC progression in vivo. RESULTS: Downregulation of LDLR was identified as a negative prognostic factor in human HCC. Reduced expression of LDLR in HCC cell lines impaired LDL uptake but promoted proliferation and metastasis in vitro and in vivo. Mechanistically, increasing intracellular de novo cholesterol biosynthesis was the chief contributor to malignant behaviors caused by LDLR inhibition, which could be rescued by simvastatin. Activation of the MEK/ERK pathway by LDLR downregulation partially contributed to intracellular cholesterol synthesis in HCC. CONCLUSIONS: Downregulation of LDLR may elevate intracellular cholesterol synthesis to accelerate proliferation and motility through a mechanism partially attributed to stimulation of the MEK/ERK signaling pathway. Repression of intracellular cholesterol synthesis with statins may constitute a targetable liability in the context of lower LDLR expression in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Colesterol/biosíntesis , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/epidemiología , Receptores de LDL/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia sin Enfermedad , Regulación hacia Abajo , Femenino , Flavonoides/farmacología , Flavonoides/uso terapéutico , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , RNA-Seq , Simvastatina/farmacología , Simvastatina/uso terapéutico , Efecto Warburg en Oncología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Sci Rep ; 7(1): 4895, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687775

RESUMEN

Potato virus Y (PVY) is a globally and economically important pathogen of potato, tobacco, tomato and other staple crops and caused significant yield losses and reductions in quality.To explore the molecular PVY-host interactions, we analysed changes in the miRNA and mRNA profiles of tobacco in response to PVY infection. A total of 81 differentially expressed miRNAs belonging to 29 families and 8133 mRNAs were identified. The Gene Ontology (GO) enrichment analyses showed that genes encoding the DNA/RNA binding, catalytic activity and signalling molecules were all significantly enriched. Moreover, 88 miRNA-mRNA interaction pairs were identified through a combined analysis of the two datasets. We also found evidence showing that the virus-derived siRNAs (vsiRNAs) from the PVY genome target tobacco translationally controlled tumor protein (NtTCTP) mRNA and mediate plant resistance to PVY. Together, our findings revealed that both miRNA and mRNA expression patterns can be changed in response to PVY infection and novel vsiRNA-plant interactions that may regulate plant resistance to PVY. Both provide fresh insights into the virus-plant interactions.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARNs/genética , Nicotiana/genética , Proteínas de Plantas/genética , Potyvirus/genética , ARN Mensajero/genética , ARN de Planta/genética , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Resistencia a la Enfermedad/genética , Ontología de Genes , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , MicroARNs/inmunología , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Potyvirus/patogenicidad , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN de Planta/inmunología , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Nicotiana/inmunología , Nicotiana/virología , Proteína Tumoral Controlada Traslacionalmente 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA