Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38862746

RESUMEN

PURPOSE: Tracheal intubation is the gold standard of airway protection and constitutes a pivotal life-saving technique frequently employed in emergency medical interventions. Hence, in this paper, a system is designed to execute tracheal intubation tasks automatically, offering a safer and more efficient solution, thereby alleviating the burden on physicians. METHODS: The system comprises a tracheal tube with a bendable front end, a drive system, and a tip endoscope. The soft actuator provides two degrees of freedom for precise orientation. It is fabricated with varying-hardness silicone and reinforced with fibers and spiral steel wire for flexibility and safety. The hydraulic actuation system and tube feeding mechanism enable controlled bending and delivery. Object detection of key anatomical features guides the robotic arm and soft actuator. The control strategy involves visual servo control for coordinated robotic arm and soft actuator movements, ensuring accurate and safe tracheal intubation. RESULTS: The kinematics of the soft actuator were established using a constant curvature model, allowing simulation of its workspace. Through experiments, the actuator is capable of 90° bending as well as 20° deflection on the left and right sides. The maximum insertion force of the tube is 2 N. Autonomous tracheal intubation experiments on a training manikin were successful in all 10 trials, with an average insertion time of 45.6 s. CONCLUSION: Experimental validation on the manikin demonstrated that the robot tracheal intubation system based on a soft actuator was able to perform safe, stable, and automated tracheal intubation. In summary, this paper proposed a safe and automated robot-assisted tracheal intubation system based on a soft actuator, showing considerable potential for clinical applications.

2.
ACS Nano ; 18(19): 12560-12568, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38700899

RESUMEN

Spin in semiconductors facilitates magnetically controlled optoelectronic and spintronic devices. In metal halide perovskites (MHPs), doping magnetic ions is proven to be a simple and efficient approach to introducing a spin magnetic momentum. In this work, we present a facile metal ion doping protocol through the vapor-phase metal halide insertion reaction to the chemical vapor deposition (CVD)-grown ultrathin Cs3BiBr6 perovskites. The Fe-doped bismuth halide (Fe:CBBr) perovskites demonstrate that the iron spins are successfully incorporated into the lattice, as revealed by the spin-phonon coupling below the critical temperature Tc around 50 K observed through temperature-dependent Raman spectroscopy. Furthermore, the phonons exhibit significant softening under an applied magnetic field, possibly originating from magnetostriction and spin exchange interaction. The spin-phonon coupling in Fe:CBBr potentially provides an efficient way to tune the spin and lattice parameters for halide perovskite-based spintronics.

3.
Aging (Albany NY) ; 16(10): 8524-8540, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38787358

RESUMEN

BACKGROUND: Hepcidin antimicrobial peptide (HAMP) is a small peptide hormone recognized for its role in iron metabolism and cancer treatment. The purpose of this study was to examine the influence of HAMP in NSCLC. METHODS: The profile of NSCLC cells and tissues was characterized via HAMP. Gain- or loss-of-function cell models of HAMP were constructed, and CCK8, colony formation, and Transwell analyses were used to confirm the influence of HAMP on NSCLC cells. Upstream and downstream HAMP mechanisms in NSCLC were also analysed. Dual-luciferase reporter and pull-down assays confirmed the associations of miR-873-5p with HAMP, miR-873-5p, and the lncRNA KCNQ1OT1/SNHG14/XIST. Moreover, a xenograft model was established in nude mice for confirming the role of HAMP in NSCLC cell growth. RESULTS: In addition, HAMP expression increased in NSCLC cells and tissues. In terms of cellular functions, the HAMP-overexpressing group exhibited elevated NSCLC cell proliferation, invasion, and migration. HAMP knockdown reversed these changes. Bioinformatics analysis indicated that miR-873-5p targeted HAMP, which affected the nuclear factor kappa B (NF-κB) pathway in NSCLC. HAMP activated the NF-κB pathway, which was negatively modulated by miR-873-5p. NF-κB inhibitor JSH-23 can partly suppress the proliferation, invasion, and migration in HAMP-overexpressed cells. Moreover, miR-873-5p was the target miRNA of long noncoding RNAs (lncRNAs), which included KCNQ1OT1, SNHG14, and XIST, and these three lncRNAs promoted HAMP. CONCLUSION: Noncoding RNA-mediated HAMP promotes NSCLC cell proliferation, migration, and invasion by initiating the NF-κB pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Ratones Desnudos , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Línea Celular Tumoral , FN-kappa B/metabolismo , Movimiento Celular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
4.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740744

RESUMEN

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Asunto(s)
Factores de Transcripción Forkhead , Neoplasias Ováricas , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , Animales , Femenino , Humanos , Ratones , beta Catenina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética
5.
Front Pharmacol ; 15: 1359832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650628

RESUMEN

Background: Acute myeloid leukemia (AML) is the most common form of leukemia among adults and is characterized by uncontrolled proliferation and clonal expansion of hematopoietic cells. There has been a significant improvement in the treatment of younger patients, however, prognosis in the elderly AML patients remains poor. Methods: We used computational methods and machine learning (ML) techniques to identify and explore the differential high-risk genes (DHRGs) in AML. The DHRGs were explored through multiple in silico approaches including genomic and functional analysis, survival analysis, immune infiltration, miRNA co-expression and stemness features analyses to reveal their prognostic importance in AML. Furthermore, using different ML algorithms, prognostic models were constructed and validated using the DHRGs. At the end molecular docking studies were performed to identify potential drug candidates targeting the selected DHRGs. Results: We identified a total of 80 DHRGs by comparing the differentially expressed genes derived between AML patients and normal controls and high-risk AML genes identified by Cox regression. Genetic and epigenetic alteration analyses of the DHRGs revealed a significant association of their copy number variations and methylation status with overall survival (OS) of AML patients. Out of the 137 models constructed using different ML algorithms, the combination of Ridge and plsRcox maintained the highest mean C-index and was used to build the final model. When AML patients were classified into low- and high-risk groups based on DHRGs, the low-risk group had significantly longer OS in the AML training and validation cohorts. Furthermore, immune infiltration, miRNA coexpression, stemness feature and hallmark pathway analyses revealed significant differences in the prognosis of the low- and high-risk AML groups. Drug sensitivity and molecular docking studies revealed top 5 drugs, including carboplatin and austocystin-D that may significantly affect the DHRGs in AML. Conclusion: The findings from the current study identified a set of high-risk genes that may be used as prognostic and therapeutic markers for AML patients. In addition, significant use of the ML algorithms in constructing and validating the prognostic models in AML was demonstrated. Although our study used extensive bioinformatics and machine learning methods to identify the hub genes in AML, their experimental validations using knock-out/-in methods would strengthen our findings.

6.
Cell Signal ; 119: 111180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642782

RESUMEN

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Inflamación , Neoplasias Ováricas , Transactivadores , Activación Transcripcional , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones Desnudos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
7.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514606

RESUMEN

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Asunto(s)
Neoplasias Colorrectales , Sistema de Señalización de MAP Quinasas , Humanos , Animales , Ratones , Fosforilación , Transformación Celular Neoplásica/genética , Carcinogénesis , Vía de Señalización Wnt , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Neoplasias Colorrectales/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/metabolismo
8.
Funct Integr Genomics ; 24(2): 33, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363382

RESUMEN

Non-small cell lung cancer (NSCLC) encompasses approximately 85% of all lung cancer cases and is the foremost cancer type worldwide; it is prevalent in both sexes and known for its high fatality rate. Expanding scientific inquiry underscores the indispensability of microRNAs in NSCLC. Here, we probed the impact of miR-873-5p on NSCLC development and chemoresistance. qRT‒PCR was used to measure the miR-873-5p level in NSCLC cells with or without chemoresistance. A model of miR-873-5p overexpression was constructed. The proliferation and viability of NSCLC cells were evaluated through CCK8 and colony formation experiments. Cell migration and invasion were monitored via Transwell assays. Western blotting was used to determine the levels of YWHAE, PI3K, AKT, EMT, apoptosis, and autophagy-related proteins. The sensitivity of NSCLC cells to the chemotherapeutic agent gefitinib was assessed. Additionally, the correlation of YWHAE with miR-873-5p was validated via a dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Overexpressed miR-873-5p suppressed migration, proliferation, invasion, and EMT while concurrently stimulating apoptotic processes. miR-873-5p was downregulated in NSCLC cells resistant to gefitinib. Upregulating miR-873-5p reversed gefitinib resistance by inducing autophagy. YWHAE was confirmed to be a downstream target of miR-873-5p. YWHAE overexpression promoted the malignant behaviors of NSCLC cells and boosted tumor growth, while these effects were reversed following miR-873-5p overexpression. Subsequent investigations revealed that overexpressing YWHAE promoted PI3K/AKT pathway activation, with miR-873-5p displaying inhibitory effects on the YWHAE-mediated PI3K/AKT signaling cascade. miR-873-5p affects proliferation, invasion, migration, EMT, autophagy, and chemoresistance in NSCLC by controlling the YWHAE/PI3K/AKT axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Masculino , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Gefitinib , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Autofagia/genética , Proliferación Celular/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
9.
Int J Nanomedicine ; 18: 6275-6292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941530

RESUMEN

Background: Skin wound is a widespread health problem and brings extraordinary burdens to patients. Exosomes derived from adipose-derived stem cells (ADSC-Exos) are considered promising strategies for repairing skin wounds. E2F1 is a member of the E2F family of transcription factors involved in cell growth and apoptosis. E2F1 deficiency in mice enhances wound healing by improving collagen deposition and angiogenesis. Additionally, E2F1 can regulate the transcription and paracrine activity of multiple miRNAs, which will inevitably reshape the paracrine expression profile of ADSC-Exos. This study aimed to investigate the impact of transcription factor E2F1 deficiency on the functions of ADSC-Exos in promoting wound healing. Methods: First, we obtained ADSCs from subcutaneous adipose tissues of WT and E2F1-/- C57BL/6 mice and separated their exosomes, denoted as ADSCWT-Exos and ADSCE2F1-/--Exos. The wound healing effects of ADSCWT-Exos and ADSCE2F1-/--Exos in full-thickness skin wound models were investigated by wound images, H&E staining, and immunohistochemical staining. For the in vitro study, the abilities of ADSCWT-Exos and ADSCE2F1-/--Exos to promote cell activities, collagen formation, and angiogenesis were evaluated. The potential mechanism by which ADSCE2F1-/--Exos promote wound healing was determined by miRNA sequencing, ChIP‒qPCR, and dual-luciferase assays. Results: ADSCE2F1-/--Exos accelerated wound healing by promoting collagen formation and angiogenesis. As a result, compared with the lower wound healing rate of 30.5% within 7 days in the control group and 42.3% in the ADSCWT-Exo group, ADSCE2F1-/--Exos significantly increased the wound healing rate to 72.5%. In vitro, ADSCE2F1-/--Exos activated the function of fibroblasts and vascular endothelial cells. The loss of E2F1 promoted miR-130b-5p expression in ADSCE2F1-/--Exos through transcriptional regulation. MiRNA high-throughput sequencing identified 12 differently expressed miRNAs between ADSCE2F1-/- and ADSCWT. ADSCE2F1-/--Exos enhanced fibroblast activities via the miR-130b-5p/TGFBR3 axis and TGF-ß activation. Conclusion: Our results indicated that ADSCE2F1-/--Exos effectively promoted wound healing by regulating the miR-130b-5p/TGFBR3 axis, thus providing a novel strategy of gene-engineered stem cell exosomes for accelerating wound healing.


Asunto(s)
Exosomas , MicroARNs , Humanos , Ratones , Animales , Exosomas/genética , Exosomas/metabolismo , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo , Colágeno/metabolismo , Cicatrización de Heridas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo
10.
Genes (Basel) ; 14(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38002938

RESUMEN

PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Pronóstico , Inmunoterapia , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia
11.
IEEE Access ; 11: 79480-79494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608804

RESUMEN

Computer-aided Diagnosis (CADx) based on explainable artificial intelligence (XAI) can gain the trust of radiologists and effectively improve diagnosis accuracy and consultation efficiency. This paper proposes BI-RADS-Net-V2, a novel machine learning approach for fully automatic breast cancer diagnosis in ultrasound images. The BI-RADS-Net-V2 can accurately distinguish malignant tumors from benign ones and provides both semantic and quantitative explanations. The explanations are provided in terms of clinically proven morphological features used by clinicians for diagnosis and reporting mass findings, i.e., Breast Imaging Reporting and Data System (BI-RADS). The experiments on 1,192 Breast Ultrasound (BUS) images indicate that the proposed method improves the diagnosis accuracy by taking full advantage of the medical knowledge in BI-RADS while providing both semantic and quantitative explanations for the decision.

12.
Biomaterials ; 301: 122281, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643487

RESUMEN

Flourished in the past two decades, fluorescent probe technology provides researchers with accurate and efficient tools for in situ imaging of biomarkers in living cells and tissues and may play a significant role in clinical diagnosis and treatment such as biomarker detection, fluorescence imaging-guided surgery, and photothermal/photodynamic therapy. In situ imaging of biomarkers depends on the spatial resolution of molecular probes. Nevertheless, the majority of currently available molecular fluorescent probes suffer from the drawback of diffusing from the target region. This leads to a rapid attenuation of the fluorescent signal over time and a reduction in spatial resolution. Consequently, the diffused fluorescent signal cannot accurately reflect the in situ information of the target. Self-immobilizing and self-precipitating molecular fluorescent probes can be used to overcome this problem. These probes ensure that the fluorescent signal remains at the location where the signal is generated for a long time. In this review, we introduce the development history of the two types of probes and classify them in detail according to different design strategies. In addition, we compare their advantages and disadvantages, summarize some representative studies conducted in recent years, and propose prospects for this field.


Asunto(s)
Colorantes Fluorescentes , Sondas Moleculares , Diagnóstico por Imagen , Difusión , Terapia Fototérmica
13.
Adv Sci (Weinh) ; 10(27): e2300759, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544925

RESUMEN

Numerous studies have demonstrated that individual proteins can moonlight. Eukaryotic Initiation translation factor 3, f subunit (eIF3f) is involved in critical biological functions; however, its role independent of protein translation in regulating colorectal cancer (CRC) is not characterized. Here, it is demonstrated that eIF3f is upregulated in CRC tumor tissues and that both Wnt and EGF signaling pathways are participating in eIF3f's oncogenic impact on targeting phosphoglycerate dehydrogenase (PHGDH) during CRC development. Mechanistically, EGF blocks FBXW7ß-mediated PHGDH ubiquitination through GSK3ß deactivation, and eIF3f antagonizes FBXW7ß-mediated PHGDH ubiquitination through its deubiquitinating activity. Additionally, Wnt signals transcriptionally activate the expression of eIF3f, which also exerts its deubiquitinating activity toward MYC, thereby increasing MYC-mediated PHGDH transcription. Thereby, both impacts allow eIF3f to elevate the expression of PHGDH, enhancing Serine-Glycine-One-Carbon (SGOC) signaling pathway to facilitate CRC development. In summary, the study uncovers the intrinsic role and underlying molecular mechanism of eIF3f in SGOC signaling, providing novel insight into the strategies to target eIF3f-PHGDH axis in CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Factor de Crecimiento Epidérmico , Serina
14.
Orthop Surg ; 15(7): 1790-1798, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37259971

RESUMEN

OBJECTIVE: There is a new medial malleolar fracture classification based on 3D CT reconstruction. However, there is no study assessing the reliability and accuracy of the new classification system and comparison between the new and the classic classification. This study aimed to compare the reliability and accuracy of the medial malleolar fracture classification based on 3D CT reconstruction and the Herscovici classification system. METHODS: We retrospectively analyzed the consecutive ankle fractures in our hospital from January 2013 to September 2020. Five inexperienced and five experienced orthopedic surgeons were included as observers to assess 68 cases with medial malleolar fractures. Ten evaluators classified the cases according to the two classification systems. The reference results of each case were made by the consensus of three senior trauma surgeons. The interobserver reliability, intraobserver reliability, and accuracy were evaluated at an interval of 6 weeks using Fleiss's kappa (κ) statistics. RESULTS: We found substantial interobserver and intraobserver reliability and 81.4% accuracy for the new classification, which was statistically superior to the Herscovici classification (P < 0.05). The reliability and accuracy of both classifications were similar in inexperienced and experienced groups, except for type III in the new classification. The interobserver reliability of type II was the best (P < 0.05), and the intraobserver reliability of IVc ranked the worst (P < 0.05) in the new classification. CONCLUSION: The reliability and accuracy of the new classification are superior to the Herscovici classification. Clinical experiences will not affect the assessment of both classification systems in most instances.


Asunto(s)
Fracturas de Tobillo , Humanos , Fracturas de Tobillo/diagnóstico por imagen , Fracturas de Tobillo/cirugía , Estudios Retrospectivos , Reproducibilidad de los Resultados , Variaciones Dependientes del Observador , Tomografía Computarizada por Rayos X/métodos
15.
Signal Transduct Target Ther ; 8(1): 187, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37202390

RESUMEN

Continuous de novo fatty acid synthesis is required for the biosynthetic demands of tumor. FBXW7 is a highly mutated gene in CRC, but its biological functions in cancer are not fully characterized. Here, we report that FBXW7ß, a FBXW7 isoform located in the cytoplasm and frequently mutated in CRC, is an E3 ligase of fatty acid synthase (FASN). Cancer-specific FBXW7ß mutations that could not degrade FASN can lead to sustained lipogenesis in CRC. COP9 signalosome subunit 6 (CSN6), an oncogenic marker of CRC, increases lipogenesis via interacting with and stabilizing FASN. Mechanistic studies show that CSN6 associates with both FBXW7ß and FASN, and antagonizes FBXW7ß's activity by enhancing FBXW7ß autoubiquitination and degradation, which in turn prevents FBXW7ß-mediated FASN ubiquitination and degradation, thereby regulating lipogenesis positively. Both CSN6 and FASN are positively correlated in CRC, and CSN6-FASN axis, regulated by EGF, is responsible for poor prognosis of CRC. The EGF-CSN6-FASN axis promotes tumor growth and implies a treatment strategy of combination of orlistat and cetuximab. Patient-derived xenograft experiments prove the effectiveness of employing orlistat and cetuximab combination in suppressing tumor growth for CSN6/FASN-high CRC. Thus, CSN6-FASN axis reprograms lipogenesis to promote tumor growth and is a target for cancer intervening strategy in CRC.


Asunto(s)
Neoplasias Colorrectales , Lipogénesis , Humanos , Cetuximab , Neoplasias Colorrectales/genética , Factor de Crecimiento Epidérmico , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Acido Graso Sintasa Tipo I/genética , Ácido Graso Sintasas/genética , Lipogénesis/genética , Orlistat
16.
Front Oncol ; 13: 1062424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865791

RESUMEN

Purpose: To establish a fast and accurate detection method for interspecies contaminations in the patient-derived xenograft (PDX) models and cell lines, and to elucidate possible mechanisms if interspecies oncogenic transformation is detected. Methods: A fast and highly sensitive intronic qPCR method detecting Gapdh intronic genomic copies was developed to quantify if cells were human or murine or a mixture. By this method, we documented that murine stromal cells were abundant in the PDXs; we also authenticated our cell lines to be human or murine. Results: In one mouse model, GA0825-PDX transformed murine stromal cells into a malignant tumorigenic murine P0825 cell line. We traced the timeline of this transformation and discovered three subpopulations descended from the same GA0825-PDX model: epithelium-like human H0825, fibroblast-like murine M0825, and main passaged murine P0825 displayed differences in tumorigenic capability in vivo. P0825 was the most aggressive and H0825 was weakly tumorigenic. Immunofluorescence (IF) staining revealed that P0825 cells highly expressed several oncogenic and cancer stem cell markers. Whole exosome sequencing (WES) analysis revealed that TP53 mutation in the human ascites IP116-generated GA0825-PDX may have played a role in the human-to-murine oncogenic transformation. Conclusion: This intronic qPCR is able to quantify human/mouse genomic copies with high sensitivity and within a time frame of a few hours. We are the first to use intronic genomic qPCR for authentication and quantification of biosamples. Human ascites transformed murine stroma into malignancy in a PDX model.

17.
Clin Transl Oncol ; 25(6): 1779-1792, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36640207

RESUMEN

PURPOSE: Head and neck rhabdomyosarcoma (HNRMS) is a rare but aggressive malignant neoplasm. Given the young patient age and critical anatomy of the head and neck, performing surgery on the primary tumor still remains debatable. This study aimed to evaluate the impact of the non-surgery-based treatment versus surgery-based treatment on patients with nonmetastatic HNRMS. METHODS: Patients diagnosed with nonmetastatic HNRMS between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database were enrolled in our study. Inverse probability treatment weighting (IPTW) method was employed to balance confounding factors between surgery and non-surgery groups. Kaplan-Meier methods and COX regression analyses were used to analyze survival outcomes of overall survival (OS) and cancer-specific survival (CSS). Prognostic nomogram was established to predict survival. RESULTS: A total of 260 eligible patients were extracted from the SEER database. Kaplan-Meier survival curves revealed that there was no significant difference in OS and CSS between the surgery and non-surgery groups both before and after IPTW (p > 0.05). Cox regression analyses and IPTW-adjusted Cox regression analyses for both OS and CSS showed similar survival between the two groups. Prognostic factors were explored and a nomogram for patients in the surgery group was constructed. Risk stratification based on the nomogram indicated that patients in surgery-high-risk group did not benefit from primary surgery. While those in surgery-low-risk group had an equal survival outcome to those in non-surgery group. CONCLUSIONS: Our study revealed that compared to patients receiving surgery, those not receiving surgery had similar survival outcomes for nonmetastatic HNRMS. Our established nomogram may serve as a practical tool for individual prognostic evaluations.


Asunto(s)
Cuello , Rabdomiosarcoma , Humanos , Bases de Datos Factuales , Estimación de Kaplan-Meier , Nomogramas , Rabdomiosarcoma/cirugía
18.
J Orthop Surg Res ; 18(1): 47, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36647099

RESUMEN

BACKGROUND: This study investigated the characteristics of humeral geometric and morphological parameters in northern Chinese population by three-dimensional measurements, and compared whether there were differences in humeral morphology among populations from different geographical regions. METHODS: Computed tomography scans of 80 humerus were obtained, reconstructed and measured. Differences in humeral morphological parameters between genders and sides were compared. Correlation analysis was used to explore possible correlations among the parameters. The differences in humeral geometric morphometric parameters between Western and East Asian populations were compared according to pool results of present and previous studies. RESULTS: The average (and standard deviation) of humeral head radius curvature, arc angle, diameter, and thickness was 151.79 ± 6.69°, 23.36 ± 2.08 mm, 44.83 ± 3.92 mm and 17.55 ± 1.84 mm in coronal humeral head plane, and 152.05 ± 8.82°, 21.81 ± 1.88 mm, 41.77 ± 3.44 mm and 16.52 ± 1.92 mm in transversal humeral head plane. The average of the humeral head medial offset and posterior offset was 7.34 ± 2.47 mm and 0.08 ± 1.72 mm. Humeral head inclination angle, arc angle and radius curvature of humeral neck-shaft averaged 137.69 ± 4.92°, 34.7 ± 5.29° and 55.76 ± 13.43 mm. Superior, inferior, anterior, posterior concave angle of humeral anatomical neck averaged 150.41 ± 10.91°, 146.55 ± 10.12°, 146.43 ± 13.53° and 149.33 ± 14.07°. The average of height of the greater tuberosity, height of the lesser tuberosity, depth, concave angle and volume of the intertubercular groove was 14.19 ± 1.7 mm, 8.9 ± 1.54 mm, 0.92 ± 0.31 mm3, 31.28 ± 9.61 mm, 4.98 ± 1.19 mm and 89.35 ± 17.62°. The upper angle of the greater tuberosity averaged 161.04 ± 7.84°, the upper angle of the greater tuberosity was 165.94 ± 3.6°. Differences in parameters of proximal humerus between genders and sides were found. There was no correlation between parameters of proximal humerus and age. Correlations were found among humeral morphological parameters. East Asian populations differed in proximal humeral morphology from Western populations. CONCLUSIONS: This study will provide references for diagnosing and classifying shoulder disease, designing prosthesis and instrument, enhancing surgical precision and guiding patient recovery.


Asunto(s)
Artroplastia de Reemplazo , Articulación del Hombro , Femenino , Humanos , Masculino , Artroplastia de Reemplazo/métodos , Pueblos del Este de Asia , Cabeza Humeral/diagnóstico por imagen , Cabeza Humeral/cirugía , Húmero/diagnóstico por imagen , Húmero/cirugía , Hombro/cirugía , Articulación del Hombro/cirugía , Tomografía Computarizada por Rayos X , China
19.
J Orthop Surg Res ; 18(1): 10, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600304

RESUMEN

BACKGROUND: The treatment of posterior malleolar fractures is changing rapidly, and the evidence base is still catching up. This study aimed to assess the mid-term prognosis of posterior malleolar fractures based on different morphological types and provides evidence for the treatment of posterior malleolar fractures. METHODS: We retrospectively analyzed the data of inpatients with posterior malleolar fractures from 1 January 2012 to 31 December 2019 at one high-volume tertiary trauma center. Fracture morphology was classified into small-shell fragment, single-fragment (small-fragment and large-fragment) and multifragment (double-fragment and compressive-fragment) by computed tomography according to our previous study. All patients were followed up at an average of 5.06 (range, 2.21-8.70) years. The Olerud-Molander Ankle Score (OMAS), EuroQol-5 Dimensions (EQ-5D) and American Orthopedic Foot and Ankle Society (AOFAS) score were recorded. RESULTS: Seventy-nine patients were included, and 7 patients were classified into the small-shell group, 52 patients into the single-fragment group and 20 patients into the multifragment group. Of all the patients, the average OMAS, EQ-5D and AOFAS scores were 85.9, 82.8 and 92.5, respectively. In the single-fragment group, patients who underwent surgical fixation in the posterior malleolus had significantly better scores (P = 0.037, 0.033 and 0.027). Among the patients with small fragments, the surgical fixation group also had higher OMAS (93.1 ± 7.5 vs. 83.5 ± 19.5, P = 0.042) and AOFAS scores (98.1 ± 3.1 vs. 91.0 ± 14.1, P = 0.028). The mean OMAS, EQ-5D and AOFAS scores were 85.5, 85.7 and 91.7, respectively, in patients with multiple fragments who underwent surgical fixation. CONCLUSION: This study shows that in fractures with a single fragment, surgical fixation of the posterior malleolar fragment led to a better prognosis in the midterm. All single fragments should be fixed regardless of size. Fixation of the posterior region in all single- and multi-fragments in posterior malleolar fractures led to satisfactory outcomes. LEVEL OF EVIDENCE: Level III, follow-up study.


Asunto(s)
Fracturas de Tobillo , Humanos , Fracturas de Tobillo/diagnóstico por imagen , Fracturas de Tobillo/cirugía , Estudios de Seguimiento , Estudios Retrospectivos , Tibia , Tomografía Computarizada por Rayos X , Fijación Interna de Fracturas/métodos , Resultado del Tratamiento
20.
J Ethnopharmacol ; 301: 115847, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36272491

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ershiwuwei Zhenzhu Pill (EZP), a representative and classic formula in Tibetan medicine, is commonly used in the treatment of various cerebrovascular diseases, including ischemic stroke (IS). Nevertheless, their efficacy and potential mechanism in treating IS have yet to be investigated. AIM OF THE STUDY: This study aimed to investigate the potential mechanisms of EZP in the treatment of IS based on network pharmacology and experimental verification. MATERIALS AND METHODS: The chemical profile of EZP was characterized using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The targets related to the compounds in EZP were predicted by the Swiss Target Prediction and Target Net platform, and targets of IS were collected from the Gene Cards and OMIM databases. Subsequently, a protein-protein interaction (PPI) network of targets was constructed and analyzed by the STRING database and Cytoscape software, version 3.7.1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed, and an ingredient-target-pathway network was constructed. Ultimately, the middle cerebral artery occlusion (MCAO) model was established to evaluate the anti-IS effects of EZP by detecting the neurological deficit score, HE, Nissl and TCC staining, and inflammatory factors, and the expression of key protein targets was detected by western blotting. RESULTS: A total of 129 components were identified in EZP. Network pharmacology revealed 3136 compound targets and 2826 disease-related targets, and 412 overlapping proteins were obtained as potential therapeutic targets. The PPI network results showed that 6 key targets (AKT1, SRC, VEGFA, TP53, TNF and EGFR) were core targets of EZP in the treatment of IS. Western blotting demonstrated that the expression levels of AKT1, VEGFA, TP53, SRC, TNF and EGFR in the brain tissue of MCAO rats were significantly changed after treatment with EZP compared to the model group. CONCLUSIONS: EZP ameliorated IS in MCAO rats. The underlying mechanism might be associated with inhibiting inflammation and apoptosis, promoting angiogenesis and protecting neurons by regulating multiple targets and pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Animales , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Receptores ErbB , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Medicina Tradicional Tibetana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA