Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512589

RESUMEN

In this work, we demonstrated a low current collapse normally on Al2O3/AlGaN/GaN MIS-HEMT with in situ H-radical surface treatment on AlGaN. The in situ atomic pretreatment was performed in a specially designed chamber prior to the thermal ALD-Al2O3 deposition, which improved the Al2O3/AlGaN interface with Dit of ~2 × 1012 cm-2 eV-1, and thus effectively reduced the current collapse and the dynamic Ron degradation. The devices showed good electrical performance with low Vth hysteresis and peak trans-conductance of 107 mS/mm. Additionally, when the devices operated under 25 °C pulse-mode stress measurement with VDS,Q = 40 V (period of 1 ms, pulse width of 1 µs), the dynamic Ron increase of ~14.1% was achieved.

2.
Mater Horiz ; 10(9): 3643-3650, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37340846

RESUMEN

The HfO2-based ferroelectric tunnel junction has received outstanding attention owing to its high-speed and low-power characteristics. In this work, aluminum-doped HfO2 (HfAlO) ferroelectric thin films are deposited on a muscovite substrate (Mica). We investigate the bending effect on the ferroelectric characteristics of the Au/Ti/HfAlO/Pt/Ti/Mica device. After 1000 bending times, the ferroelectric properties and the fatigue characteristics are largely degraded. The finite element analysis indicates that crack formation is the main reason for the fatigue damage under threshold bending diameters. Moreover, the HfAlO-based ferroelectric synaptic device exhibits excellent performance of neuromorphic computing. The artificial synapse can mimic the paired-pulse facilitation and long-term potentiation/depression of biological synapses. Meanwhile, the accuracy of digit recognition is 88.8%. This research provides a new research idea for the further development of hafnium-based ferroelectric devices.

3.
Nanomicro Lett ; 14(1): 206, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271065

RESUMEN

With the rapid development of the Internet of Things, there is a great demand for portable gas sensors. Metal oxide semiconductors (MOS) are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors. However, it is limited by high operating temperature. The current research works are directed towards fabricating high-performance flexible room-temperature (FRT) gas sensors, which are effective in simplifying the structure of MOS-based sensors, reducing power consumption, and expanding the application of portable devices. This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism, performance, flexibility characteristics, and applications. This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors, including pristine MOS, noble metal nanoparticles modified MOS, organic polymers modified MOS, carbon-based materials (carbon nanotubes and graphene derivatives) modified MOS, and two-dimensional transition metal dichalcogenides materials modified MOS. The effect of light-illuminated to improve gas sensing performance is further discussed. Furthermore, the applications and future perspectives of FRT gas sensors are also discussed.

4.
ACS Appl Mater Interfaces ; 14(37): 42356-42364, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074810

RESUMEN

The high surface-to-volume ratio and decent material properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) make them advantageous as an active channel in field-effect transistor (FET)-type gas sensing devices. However, most existing TMD gas sensors are based on a two-terminal resistance-type structure and suffer from low responsivity and slow response, which has urged materials optimization as well as device engineering. Metal-organic frameworks (MOFs) have a large number of ordered binding sites in the pores that can specifically bind to gas molecules and can be decorated on TMD surfaces to enhance gas sensing capabilities. In this work, we successfully realize the FET-type gas sensor with MoS2-MOF as the channel. The fabricated gas sensor exhibits enhanced NH3 sensing performance (22.475 times higher in responsivity) as compared to the device with a bare MoS2 channel. In addition, the FET-type gas sensor geometry enables effective tuning of sensitivity through electrical gating based on the modulation over the channel carrier concentration. Furthermore, the dependence of responsivity on the MoS2 thickness is investigated as well to achieve an in-depth understanding of the electrical modulation mechanism of the MOF-decorated MoS2 gas sensors. The demonstrated results can pave an attractive pathway toward the realization of advanced high-response and tunable TMD-based gas sensing devices.

5.
Nanotechnology ; 31(34): 345206, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32396888

RESUMEN

The effects of x-ray irradiation on the mechanically exfoliated quasi-two-dimensional (quasi-2D) ß-Ga2O3 nanoflake field-effect transistors (FETs) under the condition of biasing voltage were systematically investigated for the first time. It has been revealed that the device experienced two stages during irradiation. At low ionizing doses (<240 krad), the device performance is mainly influenced by the photo-effect and the subsequent persistent photocurrent (PPC) effect as a result of the pre-existing electron traps (e-trap) in the oxides far away from the SiO2/ß-Ga2O3 interface. At larger doses (>240 krad), the device characteristics are dominated by the radiation-induced structural or compositional deterioration. The newly-generated e-traps are found located at the SiO2/ß-Ga2O3 interface. This study shed light on the future radiation-tolerant device fabrication process development, paving a way towards the feasibility and practicability of ß-Ga2O3-based devices in extreme-environment applications.

6.
ACS Appl Mater Interfaces ; 12(12): 14095-14104, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32096620

RESUMEN

Preparation of reliable, stable, and highly responsive gas-sensing devices for the detection of acetone has been considered to be a key issue for the development of accurate disease diagnosis systems via exhaled breath. In this paper, novel CeO2 nanodot-decorated WO3 nanowires are successfully synthesized through a sequential hydrothermal and thermolysis process. Such CeO2 nanodot-decorated WO3 nanowires exhibited a remarkable enhancement in acetone-sensing performance based on a miniaturized micro-electromechanical system device, which affords high response (S = 1.30-500 ppb, 1.62-2.5 ppm), low detection limit (500 ppb), and superior selectivity toward acetone. The improved performance of the acetone sensor is likely to be originated from the fast carrier transportation of WO3 nanowires, the formation of WO3-CeO2 heterojunctions, and the existence of large amounts of oxygen vacancies in CeO2. The improved reaction thermodynamics and sensing mechanisms have also been revealed by the specific band alignment and X-ray photoelectron spectroscopy analysis.

7.
J Colloid Interface Sci ; 568: 81-88, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088454

RESUMEN

Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 °C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment.

8.
Pharmacol Res ; 153: 104660, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31982489

RESUMEN

Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-cancer effects in Bax-Bak-deficient, apoptosis-resistant and MDR cancers, whereas specific P-gp inhibitors reverse the MDR phenotype of cancer cells by blocking efflux of chemotherapeutic agents. Here, we unraveled SERCA and P-gp as double targets of the triterpenoid, celastrol to reverse MDR. Celastrol inhibited both SERCA and P-gp to stimulate calcium-mediated autophagy and ATP depletion, thereby induced collateral sensitivity in MDR cancer cells. In vivo studies further confirmed that celastrol suppressed tumor growth and metastasis by SERCA-mediated calcium mobilization. To the best of our knowledge, our findings demonstrate collateral sensitivity in MDR cancer cells by simultaneous inhibition of SERCA and P-gp for the first time.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfato/antagonistas & inhibidores , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Triterpenos/farmacología , Animales , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Triterpenos Pentacíclicos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Microsyst Nanoeng ; 6: 30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567644

RESUMEN

Highly sensitive and selective hydrogen sulfide (H2S) sensors based on hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires (NWs) were synthesized via a sequential process combining hard template processing, atomic-layer deposition, and hydrothermal processing. The hierarchical sensing materials were prepared in situ on microelectromechanical systems, which are expected to achieve high-performance gas sensors with superior sensitivity, long-term stability and repeatability, as well as low power consumption. Specifically, the hierarchical nanobowl SnO2@ZnO NW sensor displayed a high sensitivity of 6.24, a fast response and recovery speed (i.e., 14 s and 39 s, respectively), and an excellent selectivity when detecting 1 ppm H2S at 250 °C, whose rate of resistance change (i.e., 5.24) is 2.6 times higher than that of the pristine SnO2 nanobowl sensor. The improved sensing performance could be attributed to the increased specific surface area, the formation of heterojunctions and homojunctions, as well as the additional reaction between ZnO and H2S, which were confirmed by electrochemical characterization and band alignment analysis. Moreover, the well-structured hierarchical sensors maintained stable performance after a month, suggesting excellent stability and repeatability. In summary, such well-designed hierarchical highly ordered nanobowl SnO2@ZnO NW gas sensors demonstrate favorable potential for enhanced sensitive and selective H2S detection with long-term stability and repeatability.

10.
ACS Appl Mater Interfaces ; 10(1): 468-476, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29211442

RESUMEN

A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g-1), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g-1). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA