Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842135

RESUMEN

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Asunto(s)
Apoptosis , Biflavonoides , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Transducción de Señal , Proteína p53 Supresora de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Biología Computacional/métodos
2.
BMC Complement Med Ther ; 23(1): 67, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859252

RESUMEN

BACKGROUND: Diabetic ulcer is a common complication of diabetes. It is characterized by a long-term disease course and high recurrence rate. Shengji Huayu Formula (SHF) is an effective formula for treating diabetic ulcers. However, the specific effective parts of SHF remain unclear. Clarifying the active polar site of SHF would be helpful to refine research on the components in SHF that promote wound healing. This research aims to focus on evaluating the activity of polar fractions. METHODS: A diabetic rat model was established by intraperitoneally injecting streptozotocin (STZ) and was adopted to confirm the therapeutic effect of SHF. Four different polarity parts were extracted from SHF and prepared into a cream to evaluate the activity. High-performance liquid chromatography (HPLC) was used to detect chemical constituents in chloroform extracts. RESULTS: It was discovered that dracorhodin, aloe-emodin, rhein, imperatorin, emodin, isoimperatorin, chrysophanol, physcion, and tanshinone IIA were the main components of the chloroform extract from SHF. The results revealed that chloroform extract could effectively accelerate diabetic wound healing by promoting collagen regeneration and epidermal repair. Chloroform extract of SHF could stimulate the generation of vascular endothelial growth factor (VEGF). The results are also indicated that the effective active fraction was the chloroform part, and the method of detecting the main chemical constituents in the active part was successfully established. CONCLUSION: SHF could improve diabetic ulcers by promoting granulation tissue synthesis. In this study, four polar parts (petroleum ether, chloroform, ethylacetate, n-butanol) were extracted from a 95% ethanol extract. In contrast, chloroform polar parts showed a higher wound closure rate, stimulated more collagen regeneration and promoted more production of vascular endothelial cells. In conclusion, the chloroform extract of SHF was the effective polar part in ameliorating diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Emodina , Animales , Ratas , Etanol , Estreptozocina , Úlcera , Cloroformo , Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA