Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Proteomics ; 21(1): 27, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580967

RESUMEN

BACKGROUND: Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization. METHODS: Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to differentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics on an independent test cohort of 26 patients. RESULTS: We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identified known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted proteomic methods. CONCLUSIONS: Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discovering biomarkers in CRC.

2.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627687

RESUMEN

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad de Parkinson , Plaguicidas , Anciano , Humanos , Bacterias , Compuestos Organofosforados , Plaguicidas/efectos adversos , ARN Ribosómico 16S/genética
3.
Mol Neurodegener ; 18(1): 100, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115046

RESUMEN

BACKGROUND: Untargeted high-resolution metabolomic profiling provides simultaneous measurement of thousands of metabolites. Metabolic networks based on these data can help uncover disease-related perturbations across interconnected pathways. OBJECTIVE: Identify metabolic disturbances associated with Parkinson's disease (PD) in two population-based studies using untargeted metabolomics. METHODS: We performed a metabolome-wide association study (MWAS) of PD using serum-based untargeted metabolomics data derived from liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using two distinct population-based case-control populations. We also combined our results with a previous publication of 34 metabolites linked to PD in a large-scale, untargeted MWAS to assess external validation. RESULTS: LC-HRMS detected 4,762 metabolites for analysis (HILIC: 2716 metabolites; C18: 2046 metabolites). We identified 296 features associated with PD at FDR<0.05, 134 having a log2 fold change (FC) beyond ±0.5 (228 beyond ±0.25). Of these, 104 were independently associated with PD in both discovery and replication studies at p<0.05 (170 at p<0.10), while 27 were associated with levodopa-equivalent dose among the PD patients. Intriguingly, among the externally validated features were the microbial-related metabolites, p-cresol glucuronide (FC=2.52, 95% CI=1.67, 3.81, FDR=7.8e-04) and p-cresol sulfate. P-cresol glucuronide was also associated with motor symptoms among patients. Additional externally validated metabolites associated with PD include phenylacetyl-L-glutamine, trigonelline, kynurenine, biliverdin, and pantothenic acid. Novel associations include the anti-inflammatory metabolite itaconate (FC=0.79, 95% CI=0.73, 0.86; FDR=2.17E-06) and cysteine-S-sulfate (FC=1.56, 95% CI=1.39, 1.75; FDR=3.43E-11). Seventeen pathways were enriched, including several related to amino acid and lipid metabolism. CONCLUSIONS: Our results revealed PD-associated metabolites, confirming several previous observations, including for p-cresol glucuronide, and newly implicating interesting metabolites, such as itaconate. Our data also suggests metabolic disturbances in amino acid and lipid metabolism and inflammatory processes in PD.


Asunto(s)
Aminoácidos , Enfermedad de Parkinson , Humanos , Aminoácidos/metabolismo , Enfermedad de Parkinson/metabolismo , Metabolismo de los Lípidos , Glucurónidos
4.
Front Endocrinol (Lausanne) ; 14: 1190239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538792

RESUMEN

Background: Numerous studies have demonstrated that retinal chronic inflammation plays a critical role in the pathogenesis of diabetic macular edema (DME). However, studies about the association between peripheral complete blood count, an inexpensive and easily measurable laboratory index, and DME are limited. Research design and methods: The current study was a hospital-based, cross-sectional study. The participants were inpatients with type 2 diabetes who underwent vitrectomy for PDR, and the contralateral eyes in these PDR patients meeting the criteria were included in the study. Central macular thickness (CMT) was measured automatically and the DME was characterized as CMT ≥ 300 µm. Results: A total of 239 PDR participants were enrolled. The average age was 55.46 ± 10.08 years old, and the average CMT was 284.23 ± 122.09 µm. In the fully adjusted model, for CMT, the results revealed a significantly negative association between CMT and both white blood cell (WBC) count and neutrophil count (ß = -11.95, 95% CI: -22.08, -1.82; p = 0.0218; ß = -14.96, 95% CI: -28.02, -1.90; p = 0.0259, respectively); for DME, the results showed an inverse association between DME and WBC count, monocyte count, and eosinophil count (OR = 0.75, 95% CI: 0.59, 0.95; p = 0.0153; OR = 0.07, 95% CI: 0.00, 0.92; p = 0.0431; OR = 0.03, 95% CI: 0.00, 0.88; p = 0.0420, respectively). Conclusions: In conclusion, our results suggest that WBC and its subtypes in circulation may play an important role in the pathogenesis of DME in PDR patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Edema Macular , Humanos , Persona de Mediana Edad , Anciano , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/patología , Edema Macular/etiología , Edema Macular/patología , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Tomografía de Coherencia Óptica/métodos , Recuento de Células Sanguíneas
6.
Sci Adv ; 9(33): eadg7112, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595040

RESUMEN

FOXA1, a transcription factor involved in epigenetic reprogramming, is crucial for breast cancer progression. However, the mechanisms by which FOXA1 achieves its oncogenic functions remain elusive. Here, we demonstrate that the O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) of FOXA1 promotes breast cancer metastasis by orchestrating the transcription of numerous metastasis regulators. O-GlcNAcylation at Thr432, Ser441, and Ser443 regulates the stability of FOXA1 and promotes its assembly with chromatin. O-GlcNAcylation shapes the FOXA1 interactome, especially triggering the recruitment of the transcriptional repressor methyl-CpG binding protein 2 and consequently stimulating FOXA1 chromatin-binding sites to switch to chromatin loci of adhesion-related genes, including EPB41L3 and COL9A2. Site-specific depletion of O-GlcNAcylation on FOXA1 affects the expression of various downstream genes and thus inhibits breast cancer proliferation and metastasis both in vitro and in vivo. Our data establish the importance of aberrant FOXA1 O-GlcNAcylation in breast cancer progression and indicate that targeting O-GlcNAcylation is a therapeutic strategy for metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Cromatina , Humanos , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Epigenómica , Proteínas de Microfilamentos
7.
Mol Cell ; 83(13): 2316-2331.e7, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37390815

RESUMEN

The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Glucosa , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética
8.
Cell Chem Biol ; 30(6): 591-605.e4, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263275

RESUMEN

The cGAS-STING pathway has long been recognized as playing a crucial role in immune surveillance and tumor suppression. Here, we show that when the pathway is activated in a cancer-cell-autonomous response manner, it confers drug resistance. Targeted or conventional chemotherapy drugs promoted cytosolic DNA accumulation in cancer cells, activating the cGAS-STING pathway and downstream TBK1-IRF3/NF-κB signaling. This cancer cell-intrinsic response enabled the cells to counteract drug stress, allowing treatment resistance to be acquired and maintained. Blockade of stimulator of interferon genes (STING) signaling delayed and overcame resistance in models in vitro and in vivo. This finding uncovers an alternative face of cGAS-STING signaling other than the well-reported modulation of microenvironmental immune cells. It also implies a caution for the combination of STING agonist with targeted or conventional chemotherapy drug treatment, a strategy prevailing in current clinical trials.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas de la Membrana , Neoplasias , Nucleotidiltransferasas , ADN/metabolismo , Neoplasias/tratamiento farmacológico , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Proteínas de la Membrana/metabolismo
9.
Oncogene ; 42(30): 2329-2346, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37353617

RESUMEN

Reversible and dynamic O-GlcNAcylation regulates vast networks of highly coordinated cellular and nuclear processes. Although dysregulation of the sole enzyme O-GlcNAc transferase (OGT) was shown to be associated with the progression of hepatocellular carcinoma (HCC), the mechanisms by which OGT controls the cis-regulatory elements in the genome and performs transcriptional functions remain unclear. Here, we demonstrate that elevated OGT levels enhance HCC proliferation and metastasis, in vitro and in vivo, by orchestrating the transcription of numerous regulators of malignancy. Diverse transcriptional regulators are recruited by OGT in HCC cells undergoing malignant progression, which shapes genome-wide OGT chromatin cis-element occupation. Furthermore, an unrecognized cooperation between ZNF263 and OGT is crucial for activating downstream transcription in HCC cells. We reveal that O-GlcNAcylation of Ser662 is responsible for the chromatin association of ZNF263 at candidate gene promoters and the OGT-facilitated HCC malignant phenotypes. Our data establish the importance of aberrant OGT activity and ZNF263 O-GlcNAcylation in the malignant progression of HCC and support the investigation of OGT as a therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Cromatina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , N-Acetilglucosaminiltransferasas/genética , Proteínas de Unión al ADN/genética
11.
EMBO Rep ; 24(7): e56458, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37249035

RESUMEN

DNA topoisomerase IIα (TOP2A) plays a vital role in replication and cell division by catalytically altering DNA topology. It is a prominent target for anticancer drugs, but clinical efficacy is often compromised due to chemoresistance. In this study, we investigate the role of TOP2A O-GlcNAcylation in breast cancer cells and patient tumor tissues. Our results demonstrate that elevated TOP2A, especially its O-GlcNAcylation, promotes breast cancer malignant progression and resistance to adriamycin (Adm). O-GlcNAcylation at Ser1469 enhances TOP2A chromatin DNA binding and catalytic activity, leading to resistance to Adm in breast cancer cells and xenograft models. Mechanistically, O-GlcNAcylation-modulated interactions between TOP2A and cell cycle regulators influence downstream gene expression and contribute to breast cancer drug resistance. These results reveal a previously unrecognized mechanistic role for TOP2A O-GlcNAcylation in breast cancer chemotherapy resistance and provide support for targeting TOP2A O-GlcNAcylation in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos
12.
Drug Resist Updat ; 68: 100957, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990047

RESUMEN

Resistance to epidermal growth factor receptor (EGFR) inhibitors, from the first-generation erlotinib to the third generation osimertinib, is a clinical challenge in the treatment of patients with EGFR-mutant lung adenocarcinoma. Our previous work found that a novel allosteric inhibitor of phosphoglycerate mutase 1 (PGAM1), HKB99, restrains erlotinib resistance in lung adenocarcinoma cells. However, the role of HKB99 in osimertinib resistance and its underlying molecular mechanism remains to be elucidated. Herein, we found that IL-6/JAK2/STAT3 signaling pathway is aberrantly activated in both erlotinib and osimertinib resistant cells. Importantly, HKB99 significantly blocks the interaction of PGAM1 with JAK2 and STAT3 via the allosteric sites of PGAM1, which leads to inactivation of JAK2/STAT3 and thereby disrupts IL-6/JAK2/STAT3 signaling pathway. Consequently, HKB99 remarkably restores EGFR inhibitor sensitivity and exerts synergistic tumoricidal effect. Additionally, HKB99 alone or in combination with osimertinib down-regulated the level of p-STAT3 in xenograft tumor models. Collectively, this study identifies PGAM1 as a key regulator in IL-6/JAK2/STAT3 axis in the development of resistance to EGFR inhibitors, which could serve as a therapeutic target in lung adenocarcinoma with acquired resistance to EGFR inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Interleucina-6/genética , Interleucina-6/farmacología , Interleucina-6/uso terapéutico , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/farmacología , Resistencia a Antineoplásicos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Receptores ErbB , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología
13.
Sci Total Environ ; 864: 160851, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526213

RESUMEN

BACKGROUND: Pesticide exposure has consistently been associated with Parkinson's disease (PD) onset. Yet, fewer epidemiologic studies have examined whether pesticides influence PD motor and non-motor symptom progression. OBJECTIVES: Using a geographic information system tool that integrates agricultural pesticide use reports and land use records to derive ambient exposures at residences and workplaces, we assessed associations between specific pesticides previously related to PD onset with PD symptom progression in two PD patient cohorts living in agricultural regions of California. METHODS: We calculated the pounds of pesticide applied agriculturally near each participant's residential or occupational addresses from 1974 to the year of PD diagnosis, using a geographic information system tool that links the California Pesticide Use Reports database to land use data. We examined 53 pesticides selected a priori as they have previously been associated with PD onset. We longitudinally followed two PD patient cohorts (PEG1 N = 242, PEG2 N = 259) for an average of 5.0 years (SD ± 3.5) and 2.7 years (SD ± 1.6) respectively and assessed PD symptoms using the movement disorder specialist-administered Unified Parkinson's disease Rating Scale part III (UPDRS), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Weighted time-to-event regression models were implemented to estimate effects. RESULTS: Ten agricultural pesticides, including copper sulfate (pentahydrate), 2-methyl-4-chlorophenoxyacetic acid (MCPA) dimethylamine salt, tribufos, sodium cacodylate, methamidophos, ethephon, propargite, bromoxynil octanoate, monosodium methanearsonate (MSMA), and dicamba, were associated with faster symptom progression. Among these pesticides, residential or workplace proximity to higher amounts of copper sulfate (pentahydrate) and MCPA (dimethylamine salt) was associated with all three progression endpoints (copper sulfate: HRs = 1.22-1.36, 95 % CIs = 1.03-1.73; MCPA: HRs = 1.27-1.35, 95 % CIs = 1.02-1.70). CONCLUSIONS: Our findings suggest that pesticide exposure may not only be relevant for PD onset but also PD progression phenotypes. We have implicated ten specific pesticide active ingredients in faster PD motor and non-motor decline.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Enfermedad de Parkinson , Plaguicidas , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Sulfato de Cobre , Lugar de Trabajo , California/epidemiología
14.
BMJ Open ; 11(12): e052417, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873003

RESUMEN

INTRODUCTION: China has the largest number of adults with diabetes aged 20-79 years (116.4 million) in 2019. Due to the socioeconomic condition or a lack of awareness of diabetic complications, many adults with diabetes have proliferative diabetic retinopathy (PDR) or renal function impairment at their first visit to the clinic for a sudden loss of vision, and pars plana vitrectomy (PPV) is required for their treatment. Risk factors for the outcomes and complications of PPV surgery in PDR patients have been widely explored in many epidemiological studies and clinical trials. However, few prospective studies have analysed the association between renal function and surgical outcomes in PDR. METHODS AND ANALYSIS: This is a single-centre, prospective cohort study of PDR patients with type 2 diabetes mellitus who have definite indications for PPV surgery with or without renal function impairment. We will consecutively enrol PDR patients who meet the inclusion and exclusion criteria from November 2020 to December 2023. Each participant will be followed up for at least 6 months after surgery. Clinical data from medical records and vitreous fluid will be collected.Demographic characteristics and study outcomes will be summarised using descriptive statistics. The variation will be described and evaluated using the χ² test or Kruskal-Wallis test. Generalise additive mixed models will be used to explore the association between the renal profile and surgical outcomes including BCVA, and retinal and choroidal microvasculature/microstructure. Multivariate ordinal regression analysis will be used to detect the independent association between renal profile and BCVA changes, and smooth curve fitting will be employed to briefly present the tendency. ETHICS AND DISSEMINATION: The trial has received ethical approval from the West China Hospital of Sichuan University. Results of this trial will be disseminated through publication in peer-reviewed journals and presentations at local and international meetings. TRIAL REGISTRATION NUMBER: ChiCTR2000039698.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Adulto , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/diagnóstico , Humanos , Riñón/fisiología , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Vitrectomía/efectos adversos , Adulto Joven
15.
Sci Transl Med ; 13(614): eabg6428, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613810

RESUMEN

Acquired resistance represents a bottleneck to molecularly targeted therapies such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment in lung cancer. A deeper understanding of resistance mechanisms can provide insights into this phenomenon and help to develop additional therapeutic strategies to overcome or delay resistance. Here, we identified a pharmacologically targetable metabolic mechanism that drives resistance to EGFR TKIs in lung cancer cell lines and patient-derived xenograft mice. We demonstrated that aldo-keto reductase family 1 member B1 (AKR1B1) interacts with and activates signal transducer and activator of transcription 3 (STAT3) to up-regulate the cystine transporter solute carrier family 7 member 11 (SLC7A11). This leads to enhanced cystine uptake and flux to glutathione de novo synthesis, reactive oxygen species (ROS) scavenging, protection from cell death, and EGFR TKI drug resistance in lung cancer cell lines and xenograft mouse models. Suppression of AKR1B1 with selective inhibitors, including the clinically approved antidiabetic drug epalrestat, restored the sensitivity of resistant cell lines to EGFR TKIs and delayed resistance in lung cancer patient-derived xenograft mice. Our findings suggest a metabolic mechanism for resistance to a molecularly targeted therapy and provide a potential therapeutic target for overcoming resistance to EGFR TKIs, including the third-generation inhibitor osimertinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Aldehído Reductasa , Resistencia a Antineoplásicos , Receptores ErbB/genética , Glutatión , Humanos , Neoplasias Pulmonares/tratamiento farmacológico
16.
Biochim Biophys Acta Gen Subj ; 1865(8): 129930, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019948

RESUMEN

BACKGROUND: Chromatin modifier metastasis-associated protein 1 (MTA1), closely associated with tumor angiogenesis in breast cancer, plays an important role in gene expression and cancer cell behavior. Recently, an association between O-GlcNAc transferase (OGT) and MTA1 was identified by mass spectroscopy. However, the potential relationship between MTA1 and O-GlcNAc modification has not yet explored. METHODS: In the current study, the role of MTA1 and its O-GlcNAc modification in breast cancer cell genotoxic adaptation was investigated through quantitative proteomics, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome analysis, and loss- and gain-of-function experiments. RESULTS: We demonstrate that the O-GlcNAc modification promotes MTA1 to interaction with chromatin and thus changes the expression of target genes, contributing to breast cancer cell genotoxic adaptation. MTA1 is modified with O-GlcNAc residues at serine (S) residues S237/S241/S246 in adriamycin-adaptive breast cancer cells, and this modification improves the genome-wide interactions of MTA1 with gene promotor regions by enhancing its association with nucleosome remodeling and histone deacetylation (NuRD) complex. Further, O-GlcNAc modification modulates MTA1 chromatin binding, influencing the specific transcriptional regulation of genes involved in the adaptation of breast cancer cells to genotoxic stress. CONCLUSIONS: Our findings reveal a previously unrecognized role for O-GlcNAc-modified MTA1 in transcriptional regulation and suggest that the O-GlcNAc modification is a key to the molecular regulation of chemoresistance in breast cancers.


Asunto(s)
Acetilglucosamina/química , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Acetilglucosamina/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Perfilación de la Expresión Génica , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Pronóstico , Proteínas Represoras/química , Proteínas Represoras/genética , Tasa de Supervivencia , Transactivadores/química , Transactivadores/genética , Células Tumorales Cultivadas
17.
J Cancer ; 12(5): 1373-1378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33531982

RESUMEN

Hepatoblastoma (HB) is the most prevalent primary hepatic cancer in children aged 6 months to 3 years. LIN28A is recurrently mutated in various diseases, and critically involved in tumorigenesis. However, a limited number of studies have examined the involvement of LIN28A polymorphisms in HB risk. We used the TaqMan assay to genotype four LIN28A polymorphisms (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) in 275 Chinese children with HB and 1018 cancer-free controls from five medical centers in China. Their association with HB risk was evaluated on the basis of odds ratio (OR) and corresponding 95% confidence interval (CI). Overall, no significant associations were found in single locus and combine analysis. Interestingly, in the stratified analysis, we found that subjects with 1-3 risk genotypes were more likely to develop HB in patients ≥17 months of age (adjusted OR=1.76, 95% CI=1.04-2.98, P=0.034). The rs3811464 GA/AA genotypes were associated with decrease HB risk in patients with clinical stage III+IV disease (adjusted OR=0.50, 95% CI=0.26-0.96, P=0.038). Our results suggest that the LIN28A polymorphisms have a weak association with HB susceptibility in the Chinese children. LIN28A rs3811464 G>A may decrease HB risk in stage III+IV patients which need further validations with larger samples and different ethnicities.

18.
J Biol Chem ; 296: 100119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33234595

RESUMEN

GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex posttranslational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of-function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-ß) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knockout decreased O-GalNAc modification of TGF-ß type Ⅰ and Ⅱ receptor (TßR Ⅰ and Ⅱ) and led to the elevation of TGF-ß receptor dimerization and activity. Importantly, a peptide from TßR Ⅱ was identified as a naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TßR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31 A mutation enhanced TGF-ß signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-ß receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Femenino , Glicosilación , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
19.
Acta Pharmacol Sin ; 42(4): 613-623, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32704041

RESUMEN

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have achieved satisfactory clinical effects in the therapy of non-small cell lung cancer (NSCLC), but acquired resistance limits their clinical application. NRF2 has been shown to enhance the resistance to apoptosis induced by radiotherapy and some chemotherapy. In this study, we investigated the role of NRF2 in resistance to EGFR-TKIs. We showed that NRF2 protein levels were markedly increased in a panel of EGFR-TKI-resistant NSCLC cell lines due to slow degradation of NRF2 protein. NRF2 knockdown overcame the resistance to EGFR-TKIs in HCC827ER and HCC827GR cells. Furthermore, we demonstrated that NRF2 imparted EGFR-TKIs resistance in HCC827 cells via upregulation of GPX4 and SOD2, and suppression of GPX4 and SOD2 reversed resistance to EGFR-TKIs. Thus, we conclude that targeting NRF2-GPX4/SOD2 pathway is a potential strategy for overcoming resistance to EGFR-TKIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/fisiología , Neoplasias Pulmonares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Carbolinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Superóxido Dismutasa/genética , Regulación hacia Arriba/fisiología
20.
Cell Biol Int ; 45(2): 320-333, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33079401

RESUMEN

Breast cancer, one of the most frequently diagnosed and aggressive malignancies, is the major cause of cancer-related death greatly threatening women health. Polypeptide N-acetylgalactosaminyltransferase 4 (ppGalNAc-T4), responsible for the initial step of mucin-type O-glycosylation, has been reported to be implicated in diverse types of human tumors. However, the biological role of ppGalNAc-T4 in breast cancer is still undetermined. In this study, we investigate the effects and mechanism of ppGalNAc-T4 to breast cancer cell proliferation. From analysis of high throughput RNA sequencing datasets of Gene Expression Omnibus and ArrayExpress, a positive correlation between ppGalNAc-T4 and the recurrence-free survival was observed in multigroup of human breast cancer datasets. Moreover, transcriptomes analysis using RNA-sequencing in MCF7 cells revealed that cell cycle-related genes induced the effects of ppGalNAc-T4 on breast cancer cell proliferation. Additionally, investigations showed that ppGalNAc-T4 impaired cell proliferation in MCF-7 and MDA-MB-231 breast cells. Furthermore, our results suggested that the ppGalNAc-T4 knockout activated Notch signaling pathway and enhanced cell proliferation. Collectively, our data indicated that ppGalNAc-T4 affected the proliferation of human breast cancer cells, which appears to be a novel target for understanding the underlying molecular mechanism of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , N-Acetilgalactosaminiltransferasas/fisiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA