Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Drug Resist ; 7: 30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267922

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs comprising 19-24 nucleotides that indirectly control gene expression. In contrast to other non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are defined by their covalently closed loops, forming covalent bonds between the 3' and 5' ends. circRNAs regulate gene expression by interacting with miRNAs at transcriptional or post-transcriptional levels. Accordingly, circRNAs and miRNAs control many biological events related to cancer, including cell proliferation, metabolism, cell cycle, and apoptosis. Both circRNAs and miRNAs are involved in the pathogenesis of diseases, such as breast cancer. This review focuses on the latest discoveries on dysregulated circRNAs and miRNAs related to breast cancer, highlighting their potential as biomarkers for clinical diagnosis, prognosis, and chemotherapy response.

2.
Quant Imaging Med Surg ; 14(8): 5932-5945, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144053

RESUMEN

Background: The incidence rate of thyroid nodules has reached 65%, but only 5-15% of these modules are malignant. Therefore, accurately determining the benign and malignant nature of thyroid nodules can prevent unnecessary treatment. We aimed to develop a deep-learning (DL) radiomics model based on ultrasound (US), explore its diagnostic efficacy for benign and malignant thyroid nodules, and verify whether it improved the diagnostic level of physicians. Methods: We retrospectively included 1,076 thyroid nodules from 817 patients at three institutions. The radiomics and DL features of the US images were extracted and used to construct radiomics signature (Rad_sig) and deep-learning signature (DL_sig). A Pearson correlation analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used for feature selection. Clinical US semantic signature (C_US_sig) was constructed based on clinical information and US semantic features. Next, a combined model was constructed based on the above three signatures in the form of a nomogram. The model was constructed using a development set (institution 1: 719 nodules), and the model was evaluated using two external validation sets (institution 2: 74 nodules, and institution 3: 283 nodules). The performance of the model was assessed using decision curve analysis (DCA) and calibration curves. Furthermore, the C_US_sigs of junior physicians, senior physicians, and expers were constructed. The DL radiomics model was used to assist the physicians with different levels of experience in the interpretation of thyroid nodules. Results: In the development and validation sets, the combined model showed the highest performance, with areas under the curve (AUCs) of 0.947, 0.917, and 0.929, respectively. The DCA results showed that the comprehensive nomogram had the best clinical utility. The calibration curves indicated good calibration for all models. The AUCs for distinguishing between benign and malignant thyroid nodules by junior physicians, senior physicians, and experts were 0.714-0.752, 0.740-0.824, and 0.891-0.908, respectively; however, with the assistance of DL radiomics, the AUCs reached 0.858-0.923, 0.888-0.944, and 0.912-0.919, respectively. Conclusions: The nomogram based on DL radiomics had high diagnostic efficacy for thyroid nodules, and DL radiomics could assist physicians with different levels of experience to improve their diagnostic level.

4.
Environ Toxicol ; 39(3): 1802-1810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38064277

RESUMEN

In the present study, neuroprotective effect of sevoflurane in combination with ketamine was investigated on TNF-α induced necroptosis of neurons and cognitive impairment in the rat model. The results demonstrated that exposure to TNF-α/z-VAD led to a significant decrease in viability of HT-22 neuronal cells. However, incubation of HT-22 cells with ketamine plus sevoflurane inhibited decrease in viability induced by TNF-α/z-VAD exposure. The increase in production of ROS by TNF-α/z-VAD exposure in HT-22 cells was effectively suppressed on pre-treatment with ketamine plus sevoflurane. Moreover, suppression of TNF-α/z-VAD induced ROS production in HT-22 cells by ketamine plus sevoflurane pretreatment was higher in comparison to ketamine or sevoflurane treatment alone. Treatment of HT-22 cells with ketamine plus sevoflurane suppressed TNF-α/z-VAD induced increase in RIP1 and p-MLKL protein expression. Ketamine plus sevoflurane treatment effectively reversed decrease in movement speed as well as total distance traveled in TNF-α injected rats. The number of neurons in rat hippocampus injected with TNF-α showed a significant decrease more specifically in carbonic anhydrase-3 region. However, no significant change in the density of neurons was observed in the hippocampus of rats pretreated with ketamine plus sevoflurane by TNF-α injection. The increase in expression of p-MLKL and p-RIP3 by TNF-α injection was effectively reversed in rats on treatment with ketamine plus sevoflurane. In silico studies revealed that ketamine interacts with p-MLKL protein in different confirmations with the binding affinities ranging from -9.7 to -8.4 kcal/mol. It was found that ketamine binds to p-MLKL protein by interacting with alanine (ALA A:295), proline (PRO A:306), glutamine (GLN A: 307) and isoleucine (ILE A:293) amino acid residues. In summary, ketamine plus sevoflurane combination alleviates TNF-α/z-VAD induced decrease in viability of HT-22 cells in vitro and rat hippocampus neurons in vivo. Moreover, ketamine plus sevoflurane combination prevented TNF-α injection induced cognitive impairment in rats. Therefore, sevoflurane plus ketamine combination can be developed as a potential therapeutic regimen for treatment of isoflurone induced cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Ketamina , Fármacos Neuroprotectores , Ratas , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Sevoflurano , Especies Reactivas de Oxígeno/metabolismo
5.
Clin Transl Oncol ; 26(2): 338-351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37477784

RESUMEN

Gastric cancer is the fifth most common malignancy worldwide having the fourth highest mortality rate. Energy metabolism is key and closely linked to tumour development. Most important in the reprogramming of cancer metabolism is the Warburg effect, which suggests that tumour cells will utilise glycolysis even with normal oxygen levels. Various molecules exert their effects by acting on enzymes in the glycolytic pathway, integral to glycolysis. Second, mitochondrial abnormalities in the reprogramming of energy metabolism, with consequences for glutamine metabolism, the tricarboxylic acid cycle and oxidative phosphorylation, abnormal fatty acid oxidation and plasma lipoprotein metabolism are important components of tumour metabolism. Third, inflammation-induced oxidative stress is a danger signal for cancer. Fourth, patterns of signalling pathways involve all aspects of metabolic transduction, and many clinical drugs exert their anticancer effects through energy metabolic signalling. This review summarises research on energy metabolism genes, enzymes and proteins and transduction pathways associated with gastric cancer, and discusses the mechanisms affecting their effects on postoperative treatment resistance and prognoses of gastric cancer. We believe that an in-depth understanding of energy metabolism reprogramming will aid the diagnosis and subsequent treatment of gastric cancer.


Asunto(s)
Neoplasias , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Metabolismo Energético/fisiología , Neoplasias/patología , Glucólisis/genética , Ciclo del Ácido Cítrico , Fosforilación Oxidativa
6.
Curr Cancer Drug Targets ; 24(2): 127-141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37183458

RESUMEN

EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Neoplasias Nasofaríngeas , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/complicaciones , Neoplasias Gástricas/metabolismo , Carcinoma Nasofaríngeo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteínas de la Membrana/metabolismo , Microambiente Tumoral , Proteínas Virales/metabolismo
7.
In Vivo ; 38(1): 399-408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148084

RESUMEN

BACKGROUND/AIM: Regulatory functions of amyloid precursor-like protein 2 (APLP2) expression in intracellular trafficking of major histocompatibility complex class I (MHC-I) and biological behavior of tumor cells have been reported in various types of malignancies but not in cutaneous squamous cell carcinoma (CSCC). This study aimed to investigate the role of APLP2 expression in the pathogenesis of CSCC. PATIENTS AND METHODS: The expression of APLP2 and a key modulator of cancer immune escape, MHC-I, were determined in CSCC tissue samples obtained from 141 patients using immunohistochemistry. The regulatory effects of APLP2 expression on the biological behavior and surface expression of MHC-I in CSCC cells were investigated by trypan blue assay, Matrigel invasion assay, and in vivo xenograft analysis. RESULTS: APLP2 immunoreactivity was high in 73 (51.8%) tissue samples from patients with CSCC and was significantly related to subcutaneous fat invasion and poor prognosis in our cohort. Moreover, proliferation of and invasion by CSCC cells were significantly reduced after APLP2 knockdown in CSCC cells both in vitro and in vivo. A significant association was found between APLP2 and membrane MHC-I expression in patients with CSCC. In vivo xenograft analysis showed that APLP2 knockdown increased membrane MHC-I expression in CSCC cells. CONCLUSION: APLP2 not only acts as an oncogene in CSCC progression but also as a possible modulator of cancer immune escape by influencing MHC-I expression on the cell surface. APLP2 may serve as a novel molecular biomarker and therapeutic target for patients with CSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Antígenos de Histocompatibilidad Clase I , Oncogenes , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
8.
Front Immunol ; 14: 1280007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143760

RESUMEN

Background: Anaplastic Large Cell Lymphoma (ALCL) is one of the most common subtypes of T-cell lymphoma. Among these, refractory and relapsed (r/r) ALK positive ALCL lacks effective therapies. The chimeric antigen receptor-modified T (CAR-T) cell therapy holds great promise as a therapeutic strategy for this disease. However, it is not known yet whether anti-CD5 CAR-T cells are sufficient for the definitive treatment of relapsed ALK+ ALCL, nor the role of accurate laboratory-based diagnoses during CAR-T treatment. Case presentation: The adolescent patient received autologous T cells containing sequences encoding VH domains specific to CD5. Following the infusion, there was an increase in both the copy number and proportion of CAR-T cells in peripheral blood. IL-6 and ferritin levels in the patient exhibited significant fluctuations, with increases of 13 and 70 folds respectively, compared to baseline after the treatment. Additionally, adverse effects were observed, including grade 4 rash, grade 1 headache, nausea, and neck-pain. Surprisingly, a relapsed disease phenotype was identified based on the results of PET/CT and histopathological analysis of the inguinal lymph node biopsy. After conducting a thorough diagnostic assessment, which included flow cytometry, next-generation sequencing (NGS), examination of immune-related gene rearrangements, and analysis of the immune repertoire of T-cell receptors (TCR), we conclusively determined that the hyperplastic T cells identified in the lymph node were the result of an expansion of CAR-T cells. Ultimately, the patient has attained complete remission (CR) and has sustained a disease-free survival state for 815 days as of the cutoff date on August 30, 2023. Conclusion: Taken together, the results demonstrate that anti-CD5 CAR-T cells can induce a clinical response in r/r ALK+ ALCL patient. Furthermore, this case underscores the importance of utilizing advanced technologies with high sensitivity and accuracy for biological detection in clinical laboratory diagnosis and prognosis in CAR-T cell treatment. Trial registration number: NCT04767308.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Receptores Quiméricos de Antígenos , Adolescente , Humanos , Diagnóstico Diferencial , Linfoma Anaplásico de Células Grandes/terapia , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/patología
9.
Clin Transl Immunology ; 12(5): e1448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144041

RESUMEN

Objectives: Increasing evidence indicates that some germline genetic mutations that impair pathways required for robust host immune surveillance against EBV infection may result in an extremely high susceptibility to EBV-associated lymphoproliferative disease (EBV+ LPD). TNFRSF9 encodes a vital costimulatory molecule that enhances CD8+ T-cell proliferation, survival and cytolytic activity. To date, no relevant case resulting from TNFRSF9 heterozygous mutations has been identified. Methods: Here, we report the first case of CD137 deficiency caused by two novel biallelic heterozygous TNFRSF9 mutations [NM_001561.5: c.208 + 1->AT and c.452C>A (p.T151K)] in a patient presenting with severe EBV+ LPD. Immunophenotyping and in vitro assays of lymphocyte function and NK cell activity were performed. Results: Biallelic TNFRSF9 mutations resulted in markedly reduced or abrogated expression of CD137 on activated T, B and NK cells. CD8+ T cells from the patient had impaired activation, reduced expression/release of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), perforin and granzyme B, and diminished cytotoxic activity. Functional experiments identified both variations were hypomorphic mutations and played a contributing role in CD137 deficiency and the development of EBV+ LPD. Conclusion: Our study expands the genetic spectrum and clinical phenotype of patients with CD137 deficiency and provides additional evidence that the TNFRSF9 gene plays a critical role in host immune responses to EBV infection.

10.
Mol Carcinog ; 62(7): 899-906, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37036164

RESUMEN

Outcomes for patients with relapsed and refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are dismal, with few available treatments. Recently, identification of cancer patients harboring neurotrophic tropomyosin receptor kinase (NTRK) gene fusions is constantly increasing, especially with the advent of NTRK inhibitors. However, the role of ETV6-NTRK3 in T-ALL has not been investigated. This case represented the first detailed report of T-ALL patient harboring a cryptic ETV6-NTRK3 fusion with an unfavorable prognosis, not only because of leukemia resistant to the standard multiagent chemotherapy but also early relapse after allo-HSCT. Acquired EP300 mutation was found at relapse, which could explain the cause of recurrence and affect the follow-up treatment. Combined targeted therapy like larotrectinib allied with pan-targeted BCL-2 inhibitor venetoclax, may be a potential maintenance treatment in R/R ETV6-NTRK3 positive leukemia after allo-HSCT. The leukemic clonal evolution might be revealed through transcriptome sequencing and overcome by drugs with universal targets. Our case demonstrated that both comprehensive profiling techniques (such as transcriptome sequencing, multiparameter flow cytometry, and digital droplet polymerase chain reaction) and a multimodality treatment strategy were critical for anticipating an early relapse and personalized therapy of R/R T-cell leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recurrencia , Linfocitos T , Proteínas de Fusión Oncogénica/genética
11.
Front Oncol ; 13: 1120867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874132

RESUMEN

Introduction: Several prognostic factors of chronic lymphocytic leukemia (CLL) have been identified, such as cytogenetic aberrations and recurrent gene mutations. B-cell receptor (BCR) signaling plays an important role in the tumorigenesis of CLL, and its clinical significance in predicting prognosis is also under study. Methods: Therefore, we assessed the already-known prognostic markers, immunoglobulin heavy chain (IGH) gene usage and the associations among these factors in 71 patients diagnosed with CLL in our center from October 2017 to March 2022. Sequencing of IGH gene rearrangements was performed using Sanger sequencing or IGH-based next-generation sequencing, and the results were further analyzed for distinct IGH/IGHD/IGHJ genes and the mutational status of the clonotypic IGHV (IGH variable) gene. Results: In summary, by analyzing the distribution of potential prognostic factors in CLL patients, we displayed a landscape of molecular profiles, confirmed the predictive value of recurrent genetic mutations and chromosome aberrations, and found that IGHJ3 was associated with favorable markers (mutated IGHV, trisomy 12), while IGHJ6 tended to correlate with unfavorable factors (unmutated IGHV, del17p). Discussion: These results provided an indication for IGH gene sequencing in predicting the prognosis of CLL.

12.
Clin Exp Med ; 23(5): 1393-1404, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36335525

RESUMEN

Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.


Asunto(s)
Calreticulina , Neoplasias , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Inmunoterapia , Neoplasias/terapia
13.
Front Oncol ; 12: 1036511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338706

RESUMEN

Fanconi anemia (FA) genes play critical roles in the repair of DNA lesions. Non-FA (or underlying FA) patients harboring heterozygous germline FA gene mutations may also face an increased risk of developing bone marrow failure, primary immunodeficiency disease, and hereditary cancer predisposition syndromes. We report a female patient who suffered from ovarian cancer at 50 years of age. During the initial treatment, six cycles of docetaxel and carboplatin (DC) combination chemotherapy were administered followed by two cycles of docetaxel maintenance therapy. Then, she received a routine follow-up every 3 months for the next 3 years, and all the results of the examination and laboratory tests were normal. Unfortunately, at 54 years of age, she developed a secondary cancer of therapy-related (t-) chronic myelomonocytic leukemia (t-CMML). After two courses of a highly intensive induction chemotherapy regimen with DAC (decitabine) and HAA (homoharringtonine, cytarabine), the patient suffered from severe and persistent bone marrow failure (BMF). Targeted next-generation sequencing (NGS) of a panel of 80 genes was performed on her initial bone marrow aspirate sample and identified PTPN11, NRAS, and DNMT3A somatic mutations. In addition, RNA sequencing (RNA-seq) revealed a rare NUP98-HOXC11 fusion. Whole-exome sequencing (WES) verified RAD51C, BRIP1, PALB2, and FANCG heterozygous germline mutations of the FA pathway, which were further confirmed in buccal swab samples by Sanger sequencing. For this patient, we hypothesized that an altered FA pathway resulted in genomic instability, hypersensitivity to DNA-crosslinking agents or cytotoxic chemotherapeutics, and unsuccessful DNA damage repair. Consequently, she developed ovarian cancer and secondary t-CMML and then suffered from BMF and delayed post-chemotherapy bone marrow recovery after several chemotherapy courses. This case highlights the importance of genetic counseling in patients with hematopoietic neoplasms with high clinical suspicion for carrying cancer susceptibility gene mutations, which require timely diagnosis and personalized management.

14.
Pathol Res Pract ; 238: 154030, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116329

RESUMEN

Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.

15.
Exp Hematol Oncol ; 11(1): 50, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057673

RESUMEN

Minimal residual disease (MRD) is considered the strongest relevant predictor of prognosis and an effective decision-making factor during the treatment of hematological malignancies. Remarkable breakthroughs brought about by new strategies, such as epigenetic therapy and chimeric antigen receptor-T (CAR-T) therapy, have led to considerably deeper responses in patients than ever, which presents difficulties with the widely applied gold-standard techniques of MRD monitoring. Urgent demands for novel approaches that are ultrasensitive and provide sufficient information have put a spotlight on high-throughput technologies. Recently, advances in methodology, represented by next-generation sequencing (NGS)-based clonality assays, have proven robust and suggestive in numerous high-quality studies and have been recommended by some international expert groups as disease-monitoring modalities. This review demonstrates the applicability of NGS-based clonality assessment for MRD monitoring of B-cell malignancies by summarizing the oncogenesis of neoplasms and the corresponding status of immunoglobulin (IG) rearrangements. Furthermore, we focused on the performance of NGS-based assays compared with conventional approaches and the interpretation of results, revealing directions for improvement and prospects in clinical practice.

16.
Front Immunol ; 13: 873789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572515

RESUMEN

Despite impressive progress, a significant portion of patients still experience primary or secondary resistance to chimeric antigen receptor (CAR) T-cell immunotherapy for relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). The mechanism of primary resistance involves T-cell extrinsic and intrinsic dysfunction. In the present study, a total of 135 patients of DLBCL treated with murine CD19/CD22 cocktail CAR T-therapy were assessed retrospectively. Based on four criteria (maximal expansion of the transgene/CAR-positive T-cell levels post-infusion [Cmax], initial persistence of the transgene by the CAR transgene level at +3 months [Tlast], CD19+ B-cell levels [B-cell recovery], and the initial response to CAR T-cell therapy), 48 patients were included in the research and divided into two groups (a T-normal group [n=22] and a T-defect [n=26] group). According to univariate and multivariate regression analyses, higher lactate dehydrogenase (LDH) levels before leukapheresis (hazard ratio (HR) = 1.922; p = 0.045) and lower cytokine release syndrome (CRS) grade after CAR T-cell infusion (HR = 0.150; p = 0.026) were independent risk factors of T-cell dysfunction. Moreover, using whole-exon sequencing, we found that germline variants in 47 genes were significantly enriched in the T-defect group compared to the T-normal group (96% vs. 41%; p<0.0001), these genes consisted of CAR structure genes (n=3), T-cell signal 1 to signal 3 genes (n=13), T cell immune regulation- and checkpoint-related genes (n=9), cytokine- and chemokine-related genes (n=13), and T-cell metabolism-related genes (n=9). Heterozygous germline UNC13D mutations had the highest intergroup differences (26.9% vs. 0%; p=0.008). Compound heterozygous CX3CR1I249/M280 variants, referred to as pathogenic and risk factors according to the ClinVar database, were enriched in the T-defect group (3 of 26). In summary, the clinical characteristics and T-cell immunodeficiency genetic features may help explain the underlying mechanism of treatment primary resistance and provide novel insights into CAR T-cell immunotherapy.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Animales , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/terapia , Proteínas de la Membrana , Ratones , Factores R , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Estudios Retrospectivos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Linfocitos T
17.
Mol Biol Rep ; 49(6): 4525-4535, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35579738

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are forms of non-coding RNAs that have crucial roles in regulation of various biological processes of several malignant tumors. circKIF4A is closely associated with malignant progression of a variety of cancers. However, the molecular mechanisms as well as roles of circKIF4A in osteosarcoma (OS) have not yet been clearly elucidated. METHODS: We evaluated the expression of circKIF4A in OS. Colony-formation, cell counting kit-8 (CCK-8), transwell and mice metastasis model assays were done to explore the roles of circKIF4A in vitro and in vivo. TargetScan database, double luciferase, quantitative reverse transcription polymerase chain reaction analysis (RT-qPCR), and RNA immunoprecipitation (RIP) were done to investigate the associated molecular mechanisms. RESULTS: In both OS cells and tissues, circKIF4A (hsa_circ_0007255) was found to be upregulated. In vitro and in vivo, circKIF4A knockdown markedly suppressed OS proliferation as well as metastasis. circKIF4A enhanced OS growth as well as metastasis by sponging miR-515-5p and by upregulating SLC7A11. CONCLUSIONS: We identified the biological significance of the circKIF4A-miR-515-5p-SLC7A11 axis in OS cell proliferation and metastasis, which is important in OS monitoring and treatment. More studies on circKIF4A will inform on the diagnostic markers for early OS screening.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neoplasias Óseas , Cinesinas , MicroARNs , Osteosarcoma , ARN Circular , Sistema de Transporte de Aminoácidos y+/genética , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Cinesinas/genética , Ratones , MicroARNs/genética , Osteosarcoma/genética , Osteosarcoma/patología , ARN Circular/genética , Regulación hacia Arriba
18.
Pathol Res Pract ; 233: 153857, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35358781

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are one type of RNAs with many different functions. circRNAs are very crucial in human malignancy progression. However, few studies have investigated the function and exact mechanism of circRNAs in neuroblastoma. In the current study, we investigated the biological function of circ0125803 in the proliferation and metastasis of neuroblastoma. METHODS: A high-throughput circRNA microarray sequencing was conducted to screen differentially expressed circRNAs and in neuroblastoma. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of circRNA and miRNA. RNA immunoprecipitation and dual luciferase reporter experiments were both conducted to investigate the molecular interaction mechanism of circ0125803 in neuroblastoma. RESULTS: We identified hsa_circ_0125803 (circ0125803) as an extremely upregulated circRNA in neuroblastoma samples. Knockdown of circ0125803 significantly decreased the growth rate and invasion rate in neuroblastoma. Our data demonstrated upregulation of circ0125803 promotes the neuroblastoma progression by blocking miR-197-5p and upregulating E2F1 expression. CONCLUSION: This study uncovered the biological function of the circ0125803-miR-197-5p-E2F1 axis in neuroblastoma metastasis and growth.


Asunto(s)
MicroARNs , Neuroblastoma , Línea Celular Tumoral , Proliferación Celular/genética , Factor de Transcripción E2F1 , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuroblastoma/genética , ARN Circular/genética
19.
Mod Pathol ; 35(5): 632-639, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34802044

RESUMEN

Small B-cell lymphoid neoplasms (SBCLNs) are a heterogeneous group of diseases characterized by malignant clonal proliferation of mature B-cells. However, the classification of SBCLNs remains a challenge, especially in cases where histopathological analysis is unavailable or those with atypical laboratory findings or equivocal pathologic data. In this study, gene expression profiling of 1039 samples from 27 gene expression omnibus (GEO) datasets was first investigated to select highly and differentially expressed genes among SBCLNs. Samples from 57 SBCLN cases and 102 nonmalignant control samples were used to train a classifier using the NanoString platform. The classifier was built by employing a cascade binary classification method based on the random forest algorithm with 35 refined gene signatures. Cases were successively classified as chronic lymphocytic leukemia/small lymphocytic lymphoma, conventional mantle cell lymphoma, follicular lymphoma, leukemic non-nodal mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenström's macroglobulinemia, and other undetermined. The classifier algorithm was then validated using an independent cohort of 197 patients with SBCLNs. Under the distribution of our validation cohort, the overall sensitivity and specificity of proposed algorithm model were >95%, respectively, for all the cases with tumor cell content greater than 0.72. Combined with additional genetic aberrations including IGH-BCL2 translocation, MYD88 L265P mutation, and BRAF V600E mutation, the optimal sensitivity and specificity were respectively found at 0.88 and 0.98. In conclusion, the established algorithm demonstrated to be an effective and valuable ancillary diagnostic approach for the sub-classification and pathologic investigation of SBCLN in daily practice.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B de la Zona Marginal , Linfoma de Células del Manto , Macroglobulinemia de Waldenström , Adulto , Linfocitos B/patología , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B de la Zona Marginal/genética , Linfoma de Células del Manto/diagnóstico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Factor 88 de Diferenciación Mieloide/genética , Macroglobulinemia de Waldenström/diagnóstico , Macroglobulinemia de Waldenström/genética , Macroglobulinemia de Waldenström/patología
20.
Clin Chim Acta ; 523: 120-130, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34537217

RESUMEN

Among cancers, breast cancer has the highest incidence rate among women and poses a tremendous threat to women's health. Messenger RNA (mRNA), microRNA (miRNA) and circular RNA (circRNA) play vital roles in the progression of breast cancer through a variety of biological effects and mechanisms. Recently, the regulatory network formed by circRNAs, miRNAs and mRNAs has piqued attention and garnered interest. CircRNAs bind to miRNAs through a regulatory mechanism in which endogenous RNAs compete to indirectly regulate the expression of mRNA corresponding to downstream target genes of miRNAs, contributing to the progression of breast cancer. The circRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of breast cancer and a potential breast cancer treatment target, providing unlimited possibilities for the development of breast cancer biomarkers and therapeutic strategies. This article reviews recent research progress on the circRNA-miRNA-mRNA axis as a regulatory network of competing endogenous RNAs in breast cancer. Herein, we focus on the mechanism and function of the circRNA-miRNA-mRNA axis in the occurrence and metastasis of breast cancer, and resistance to chemotherapy.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , ARN Circular , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA