Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Plant Sci ; 13: 912603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860545

RESUMEN

Riptortus pedestris (Fabricius) is a polyphagous hemipteran crop pest that mainly feeds on the leguminous plants, resulting in shriveled and dimpled seeds. With recent several outbreaks in the Huang-Huai-Hai region of China, as well as in South Korea and Japan, this species has caused enormous economic losses to soybean crops. In the present study, we found that R. pedestris feeding results in local lesions at the infestation sites. To identify the key effectors that induce plant damage during feeding, the salivary glands of R. pedestris were dissected for transcriptome sequencing, and 200 putative secreted proteins were transiently expressed in N. benthamiana. Among them, three intracellular effectors (RP191, RP246, and RP302) and one apoplastic effector (RP309) were identified as necrosis-inducing proteins (NIPs), which also triggered the reactive oxidative burst. Yeast signal sequence trap and qRT-PCR analysis suggested that these proteins might be secreted into plant tissue during R. pedestris infestation. Pathogenicity assays revealed that RP191, 246, and 302 promote Phytophthora capsici infection or induce Spodoptera litura feeding by inhibiting plant immunity. RP302 is localized to the cytoplasm and nuclei, while RP191 and 246 are endoplasmic reticulum (ER) resident proteins. RP309 stimulates the expression of PTI marker genes, and its induced cell death depends on co-receptors NbBAK1 and NbSOBIR1, indicating that it is a HAMP. Bioinformatics analysis demonstrated that four NIPs are recently evolved effectors and only conserved in the Pentatomidae. In this study, saliva-secreted proteins were used as the starting point to preliminarily analyze the harm mechanism of R. pedestris, which might provide a new idea and theoretical basis for this species control.

2.
J Cell Physiol ; 234(4): 4342-4351, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30132884

RESUMEN

Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Recent studies demonstrated that PXR was also expressed in the vasculature and protected the vessels from endogenous and exogenous insults, thus representing a novel gatekeeper in vascular defense. In this study, we examined the potential function of PXR in the neointimal formation following vascular injury. In the rat carotid artery after balloon injury, overexpression of a constitutively active PXR increased the intima-to-media ratio in the injured region. PXR increased cell proliferation and migration in cultured rat aortic smooth muscle cells (SMCs) by inducing the expressions of cyclins (cyclin A, D1, and E) and cyclin-dependent kinase 2. In addition, PXR increased the phosphorylation and activation of extracellular-signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Inactivation of ERK1/2 and p38 MAPK pathways using selective inhibitors (U0126 and SB203580) abrogated PXR-induced SMC proliferation and migration. Furthermore, cigarette smoke particles (CSP) activated PXR in SMCs. Knockdown of PXR by small interfering RNA suppressed the cell proliferation, migration, and activation of the MAPK pathways by CSP. These findings suggested a novel role for PXR in promoting SMC proliferation and migration, and neointimal hyperplasia. Therefore, PXR may be a potential therapeutic target for vascular disease related to xenobiotics such as cigarette smoking and other environmental pollutants.


Asunto(s)
Traumatismos de las Arterias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Receptor X de Pregnano/metabolismo , Angioplastia de Balón , Animales , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Ciclinas/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Receptor X de Pregnano/agonistas , Ratas Sprague-Dawley , Transducción de Señal , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA