Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Oncogene ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155296

RESUMEN

Metabolic reprogramming and cellular senescence greatly contribute to cancer relapse and recurrence. In aging and treated prostate, persistent accumulating senescence-associated secretory phenotype (SASP) of cancer cells often limits the overall survival of patients. Novel strategic therapy with monoacylglycerol lipase (MGLL) upregulation that counters the cellular and docetaxel induced SASP might overcome this clinical challenge in prostate cancer (PCa). With primary comparative expression and survival analysis screening of fatty acid (FA) metabolism signature genes in the TCGA PCa dataset and our single center cohort, MGLL was detected to be downregulated in malignancy prostate tissues and its low expression predicted worse progression-free and overall survival. Functionally, overexpression of MGLL mainly suppresses NF-κB-driven SASP (N-SASP) which mostly restricts the cancer cell paracrine and autocrine tumorigenic manners and the corresponding cellular senescence. Further investigating metabolites, we determined that MGLL constitutive expression prevents lipid accumulation, decreases metabolites preferably, and consequently downregulates ATP levels. Overexpressed MGLL inhibited IκBα phosphorylation, NF-κB p65 phosphorylation, and NF-κB nuclear translocation to deactivate NF-κB transcriptional activities, and be responsible for the repressed N-SASP, partially through reducing ATP levels. Preclinically, combinational treatment with MGLL overexpression and docetaxel chemotherapy dramatically delays tumor progression in mouse models. Taken together, our findings identify MGLL as a switch for lipase-related N-SASP suppression and provide a potential drug candidate for promoting docetaxel efficacy in PCa.

2.
Anal Chem ; 96(35): 14108-14115, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167423

RESUMEN

In electrochemical analysis, developing biosensors that can resist the nonspecific adsorption of interfering biomolecules in human serum remains a huge challenge, which depends on the design of efficient antifouling materials. Herein, 3-aminopropyldimethylamine oxide (APDMAO) biomimetic zwitterions were prepared as antifouling interfaces. Among them, the unique positive and negative charges (N+-O-) of APDMAO promoted its hydrogen bonding with water molecules, forming a firm hydration barrier that endowed it with strong and stable antifouling performance. Meanwhile, its inherent amino groups could copolymerize with the biomimetic adhesive dopamine to form a thin layer of quinone intermediates, providing conditions for the subsequent binding of aptamers and signal probes. Importantly, the biomimetic APDMAO with functional groups and one-step oxidation characteristics solved the challenges of zwitterionic synthesis and modification, as well as improved biocompatibility of the sensing interface, thereby expanding the application potential of zwitterions as antifouling materials in sensing analysis. Thiol-containing alpha-fetoprotein (AFP) aptamers modified with methylene blue (MB) were coupled under controllable potential, greatly reducing the incubation time, which promoted the productization application of biosensors. In addition, the ratio sensing strategy using MB as internal standard factors and concanavalin-silver nanoparticles (ConA-Ag NPs) as signal probes was introduced to reduce background and instrument interferences, thus improving detection accuracy. On this basis, the proposed antifouling electrochemical biosensor achieved sensitive and accurate AFP detection over a wide dynamic range (10 fg/mL-10 ng/mL), with a low detection limit of 3.41 fg/mL (3σ/m). This work provides positive insights into the development of zwitterionic antifouling materials and clinical detection of liver cancer markers in human serum.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Incrustaciones Biológicas/prevención & control , Aptámeros de Nucleótidos/química , Propilaminas/química , Polímeros/química
3.
Food Chem ; 453: 139643, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761734

RESUMEN

The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.


Asunto(s)
Adhesivos , Polifenoles , Proteínas de Soja , , Resistencia a la Tracción , Proteínas de Soja/química , Polifenoles/química , Adhesivos/química , Té/química , Interacciones Hidrofóbicas e Hidrofílicas , Viscosidad , Camellia sinensis/química , Extractos Vegetales/química , Enlace de Hidrógeno
4.
J Gastrointest Oncol ; 15(2): 747-754, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756627

RESUMEN

Background: With improving survival after pancreatic cancer (PC) resection, questions emerge concerning risk and patterns of metachronous tumors. We aimed to determine the incidence of multiple primary cancers among postoperative PC survivors. Methods: Patients undergoing PC surgery from 1975 to 2020 were identified in the Surveillance, Epidemiology, and End Results (SEER) registry. Standardized incidence ratios (SIRs) compared observed-to-expected cancers based on U.S. population rates. Cumulative incidence of secondary tumors was analyzed with Cox regression and cancer-specific survival with Kaplan-Meier curves. Results: Of 6,100 resected PC patients, 267 (4.38%) developed multiple cancers over 6.2 years median follow-up period. Subsequent malignancies showed a rising cumulative incidence extending beyond 5 years. Lung cancer was the predominant second primary in both males (n=36, SIR 1.87) and females (n=32, SIR 2.17). Prostate (n=33) and breast (n=25) cancers were also common. Risk varied by latency period and gender. Conclusions: Postoperative PC patients face a measurable risk for secondary cancers. Enhanced long-term surveillance has the potential to improve early detection and outcomes in this survivor population. Our data provides real-world evidence which could help inform surveillance guidelines in the future.

5.
Food Res Int ; 185: 114289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658073

RESUMEN

A food adhesive comprising tannic acid (TA) and soybean protein isolate (SPI) was developed to establish a cohesive bond between soy protein gel and simulated fat. The impact of varying TA concentrations and pH levels on the adhesive's rheology, thermal stability, chemical structure, and tensile strength were investigated. Rheological results revealed a gradual decrease in adhesive viscosity with increasing TA content. Differential scanning calorimetry (DSC) and thermal gravimetric (TG) results indicated that the stability of the adhesive improved with higher TA concentrations, reaching its peak at 0.50% TA addition. The incorporation of TA resulted in the cross-linking of amino group in unfolded SPI molecules, forming a mesh structure. However, under alkaline conditions (pH 9), adhesive viscosity and stability increased compared to the original pH. This shift was due to the disruption of the SPI colloidal charge structure, an increase in the stretching of functional groups, further unfolding of the structure, and an enhanced binding of SPI to TA. Under the initial pH conditions, SPI reacted with TA's active site to form covalent crosslinked networks and hydrogen bonds. In alkaline condition, beyond hydrogen and ionic bonding, the catechol structure was oxidized, forming an ortho-quinone that crosslinked SPI and created a denser structure. Tensile strength measurements and freeze-thaw experiments revealed that the adhesive exhibited maximum tensile strength and optimal adhesion with 0.75% TA at pH 9, providing the best overall performance. This study provides a new formulation and approach for developing plant-based meat analogues adhesives.


Asunto(s)
Polifenoles , Reología , Proteínas de Soja , Taninos , Resistencia a la Tracción , Taninos/química , Proteínas de Soja/química , Concentración de Iones de Hidrógeno , Viscosidad , Adhesivos/química , Sustitutos de la Carne
6.
World J Clin Cases ; 12(12): 2086-2091, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38680270

RESUMEN

BACKGROUND: Venous variations are uncommon and usually hard to identify, and basilic vein variation is particularly rare. Basilic vein variation usually presents without any clinical symptoms and is often regarded as a benign alteration. This case was a patient with congenital basilic vein variation encountered during surgery for an infusion port. CASE SUMMARY: We documented and analyzed an uncommon anatomical variation in the basilic vein encountered during arm port insertion. This peculiarity has hitherto remained undescribed in the literature. We offer remedial strategies for addressing this anomaly in the future and precautionary measures to circumvent its occurrence. We conducted a comprehensive review of analogous cases in the literature, offering pertinent therapeutic recommendations and solutions, with the aim of enhancing the efficacy and safety of future arm port implantations. CONCLUSION: Venous variation is rare and requires detailed intraoperative and postoperative examination to ensure accuracy, so as not to affect subsequent treatment.

7.
Eur J Pediatr ; 183(2): 581-590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851084

RESUMEN

This study aims to assess the role of methotrexate-related gene polymorphisms in children with acute lymphoblastic leukemia (ALL) during high-dose methotrexate (HD-MTX) therapy and to explore their effects on serum metabolites before and after HD-MTX treatment. The MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435C>T, and GSTP1 313A>G genotypes of 189 children with ALL who received chemotherapy with the CCCG-ALL-2020 regimen from January 2020 to April 2023 were analyzed, and toxic effects were reported according to the Common Terminology Criteria for Adverse Events (CTCAE, version 5.0). Fasting peripheral blood serum samples were collected from 27 children before and after HD-MTX treatment, and plasma metabolites were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). The results of univariate and multivariate analyses showed that MTHFR 677C>T and ABCB1 3435 C>T gene polymorphisms were associated with the delayed MTX clearance (P < 0.05) and lower platelet count after treatment in children with MTHFR 677 mutation compared with wild-type ones (P < 0.05), and pure mutations in ABCB1 3435 were associated with higher serum creatinine levels (P < 0.05). No significant association was identified between MTHFR 677C>T, MTHFR 1298A>C, ABCB1 3435 C>T, and GSTP1 313A>G genes and hepatotoxicity or nephrotoxicity (P > 0.05). However, the serum metabolomic analysis indicated that the presence of the MTHFR 677C > T gene polymorphism could potentially contribute to delayed MTX clearance by influencing L-phenylalanine metabolism, leading to the occurrence of related toxic side effects. CONCLUSION: MTHFR 677C>T and ABCB1 3435 C>T predicted the risk of delayed MTX clearance during HD-MTX treatment in children with ALL. Serum L-phenylalanine levels were significantly elevated after HD-MTX treatment in children with the MTHFR 677C>T mutation gene. TRIAL REGISTRATION: This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR2000035264; registration: 2020/08/05; https://www.chictr.org.cn/ ). WHAT IS KNOWN: • MTX-related genes play an important role in MTX pharmacokinetics and toxicity, but results from different studies are inconsistent and the mechanisms involved are not clear. WHAT IS NEW: • Characteristics, prognosis, polymorphisms of MTX-related genes, and metabolite changes were comprehensively evaluated in children treated with HD-MTX chemotherapy. • Analysis revealed that both heterozygous and pure mutations in MTHFR 677C>T resulted in a significantly increased risk of delayed MTX clearance, and that L-phenylalanine has the potential to serve as a predictive marker for the metabolic effects of the MTHFR 677C>T polymorphism.


Asunto(s)
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Metotrexato/efectos adversos , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genotipo , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Fenilalanina , Polimorfismo de Nucleótido Simple
8.
Sci Rep ; 13(1): 19438, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945738

RESUMEN

To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 µmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.


Asunto(s)
Aterosclerosis , Hiperhomocisteinemia , Ratones , Animales , Endorribonucleasas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Músculo Liso Vascular/metabolismo , Células Espumosas/metabolismo , Hiperhomocisteinemia/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Aterosclerosis/metabolismo , Regiones Promotoras Genéticas , Metionina/metabolismo , Apolipoproteínas E/metabolismo , Lípidos/farmacología , Homocisteína/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Estrés del Retículo Endoplásmico
9.
Plant Physiol Biochem ; 204: 108092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852068

RESUMEN

In this study, we compared sorbitol metabolism, energy metabolism, and CI development in yellow peach fruit at 1 °C (less susceptible to CI) and 8 °C (more susceptible to CI) storage to elucidate potential connections between them. The results indicated that storage at 1 °C effectively maintained the textural quality of yellow peach fruit and delayed the onset of CI by 12 days compared to 8 °C. This positive effect might be attributable to 1 °C storage maintaining higher sorbitol content throughout the storage duration, thus sustaining the higher adenosine triphosphate (ATP) level and energy charge. The regulation of sorbitol accumulation by 1 °C storage was closely linked to the metabolic activity of sorbitol, which stimulated sorbitol synthesis by enhancing sorbitol-6-phosphate dehydrogenase (S6PDH) activity after 12 days while suppressing sorbitol degradation via decreased sorbitol oxidase (SOX) and NAD+-sorbitol dehydrogenase (NAD+-SDH) activities before 24 days. In addition, the notable up-regulation in the NAD+-SDH activity in the late storage period promoted the conversion of sorbitol to fructose and glucose under 1 °C storage, thereby providing ample energy substrate for ATP generation. Moreover, sorbitol acts as a vital signaling molecule, and substantially up-regulated expressions of sorbitol transporters genes (PpeSOT3, PpeSOT5, and PpeSOT7) were observed in fruit stored at 1 °C, which might promote sorbitol transport and improve cold tolerance in peach fruit. Taken together, these findings suggested that 1 °C storage delayed CI by enhancing sorbitol metabolism and transporter activity, promoting sorbitol accumulation, and finally elevating the energy status in yellow peach fruit.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Frutas/metabolismo , Sorbitol/metabolismo , Frío
10.
ACS Appl Mater Interfaces ; 15(39): 45764-45773, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37726198

RESUMEN

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells. Specifically, the oxidative stability of the LHCE was found to heavily rely on the ratio between salt and solvating solvent, where local-saturation was necessary to stabilize performance. Through molecular dynamics (MD) simulations, this behavior was found to be a result of aggregated solvation structures of Li+/anion pairs. This LHCE system was found to produce significantly improved LMR cycling (95.8% capacity retention after 100 cycles) relative to a carbonate control as a result of improved cathode-electrolyte interphase (CEI) chemistry from X-ray photoelectron spectroscopy (XPS), and cryogenic transmission electron microscopy (cryo-TEM). Leveraging this stability, 4 mAh cm-2 LMR||2× Li full cells were demonstrated, retaining 87% capacity after 80 cycles in LHCE, whereas the control electrolyte produced rapid failure. This work uncovers the benefits, design requirements, and performance origins of LHCE electrolytes for high-voltage Li||LMR batteries.

11.
Cancer Biol Ther ; 24(1): 2255369, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37705174

RESUMEN

Tumor cells have significant heterogeneity in metabolism and are closely related to prognosis, gene mutation, and subtype. However, this association has not been demonstrated in reports of gastrointestinal tumors. In this study, we constructed four metabolic subtypes and identified four gene signatures using the expression data and clinical information of 252 metabolism-related genes from TCGA and NCBI databases for gastric adenocarcinoma (STAD) and colorectal cancer (COAD and READ). MC1 had the worst prognosis compared to other classifications. GSig1 was mainly related to drug metabolism and was the highest in MC1 with the worst prognosis, while the other subtypes were mainly related to glucose metabolism pathways. This difference also existed in other different malignant tumors. In addition, metabolic typing was associated with chemotherapeutic drug response and tumor heterogeneity, which indicated that monitoring metabolic typing could contribute to drug efficacy and gene-targeted therapy. In conclusion, we identified differences among subtypes in clinical characteristics such as prognosis and revealed the potential function of metabolic subtype in response to chemotherapeutic agents and oncogene mutations. This work highlighted the potential clinical meaning of metabolic subtype and characteristics in drug therapy and prognosis assessment of malignant tumors.


Asunto(s)
Adenocarcinoma , Neoplasias Gastrointestinales , Neoplasias Gástricas , Humanos , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Bases de Datos Factuales , Terapia Genética
12.
Int J Mol Med ; 52(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615186

RESUMEN

Following the publication of the above paper, it was drawn to the Editor's attention by a concerned reader that certain of the colony formation assay data shown in Fig. 3A on p. 7 and the immunohistochemistry data in Fig. 5D were strikingly similar to data that had already appeared in previous publications. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were under consideration for publication, prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they accepted the decision to retract this paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 48: 211, 2021; DOI: 10.3892/ijmm.2021.5044].

13.
Expert Rev Mol Med ; 25: e21, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37332167

RESUMEN

Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/ß-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/ß-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.


Asunto(s)
Alcaloides , Neoplasias de la Mama , Vía de Señalización Wnt , Femenino , Humanos , Alcaloides/farmacología , Alcaloides/uso terapéutico , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Resistencia a Medicamentos , Medicina Tradicional China
14.
Cell Insight ; 2(1): 100075, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37192910

RESUMEN

RNA N6-methyladenosine (m6A) has been identified as the most common, abundant and conserved internal modification in RNA transcripts, especially within eukaryotic messenger RNAs (mRNAs). Accumulating evidence demonstrates that RNA m6A modification exploits a wide range of regulatory mechanisms to control gene expression in pathophysiological processes including cancer. Metabolic reprogramming has been widely recognized as a hallmark of cancer. Cancer cells obtain metabolic adaptation through a variety of endogenous and exogenous signaling pathways to promote cell growth and survival in the microenvironment with limited nutrient supply. Recent emerging evidence reveals reciprocal regulation between the m6A modification and disordered metabolic events in cancer cells, adding more complexity in the cellular network of metabolic rewiring. In this review, we summarize the most recent advances of how RNA methylation affects tumor metabolism and the feedback regulation of m6A modification by metabolic intermediates. We aim to highlight the important connection between RNA m6A modification and cancer metabolism, and expect that studise of RNA m6A and metabolic reprogramming will lead to greater understanding of cancer pathology.

15.
Oxid Med Cell Longev ; 2023: 1847700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860731

RESUMEN

Background: The molecular classification of HCC premised on metabolic genes might give assistance for diagnosis, therapy, prognosis prediction, immune infiltration, and oxidative stress in addition to supplementing the limitations of the clinical staging system. This would help to better represent the deeper features of HCC. Methods: TCGA datasets combined with GSE14520 and HCCDB18 datasets were used to determine the metabolic subtype (MC) using ConsensusClusterPlus. ssGSEA method was used to calculate the IFNγ score, the oxidative stress pathway scores, and the score distribution of 22 distinct immune cells, and their differential expressions were assessed with the use of CIBERSORT. To generate a subtype classification feature index, LDA was utilized. Screening of the metabolic gene coexpression modules was done with the help of WGCNA. Results: Three MCs (MC1, MC2, and MC3) were identified and showed different prognoses (MC2-poor and MC1-better). Although MC2 had a high immune microenvironment infiltration, T cell exhaustion markers were expressed at a high level in MC2 in contrast with MC1. Most oxidative stress-related pathways are inhibited in the MC2 subtype and activated in the MC1 subtype. The immunophenotyping of pan-cancer showed that the C1 and C2 subtypes with poor prognosis accounted for significantly higher proportions of MC2 and MC3 subtypes than MC1, while the better prognostic C3 subtype accounted for significantly lower proportions of MC2 than MC1. As per the findings of the TIDE analysis, MC1 had a greater likelihood of benefiting from immunotherapeutic regimens. MC2 was found to have a greater sensitivity to traditional chemotherapy drugs. Finally, 7 potential gene markers indicate HCC prognosis. Conclusion: The difference (variation) in tumor microenvironment and oxidative stress among metabolic subtypes of HCC was compared from multiple angles and levels. A complete and thorough clarification of the molecular pathological properties of HCC, the exploration of reliable markers for diagnosis, the improvement of the cancer staging system, and the guiding of individualized treatment of HCC all gain benefit greatly from molecular classification associated with metabolism.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/genética , Estrés Oxidativo/genética , Complejo CD3 , Microambiente Tumoral/genética
16.
Pharm Biol ; 60(1): 1771-1780, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36093612

RESUMEN

CONTEXT: Coreopsis tinctoria Nutt (Asteraceae), named snow chrysanthemum, is known to have a high level of polyphenols. However, the potential prebiotic effect on modulating intestinal microflora is still unclear. OBJECTIVE: The chemical composition, antioxidant properties of snow chrysanthemum polyphenols (SCPs) and their effects on human intestinal microbiota were investigated. MATERIALS AND METHODS: SCPs were extracted using ultrasonic-assisted extraction, and further determined using UPLC-QE Orbitrap/MS. Five assays were used to investigate the antioxidant activities of SCPs. Subsequently, the effects of SCPs on intestinal microbiota in vitro were determined by high throughput sequencing and bioinformatics analysis. RESULTS: Marein, isookanin and cymaroside were the major phenolic compounds, which accounted for 42.17%, 19.53% and 12.25%, respectively. Marein exhibited higher scavenging capacities in DPPH (EC50 = 8.84 µg/mL) and super anion radical assay (EC50 = 282.1 µg/mL) compared to cymaroside and isookanin. The antioxidant capacity of cymaroside was weakest among the three phenolic compounds due to the highest EC50 values, especially for superoxide anion radical assay, EC50 > 800 µg/mL. The result of in vitro fermentation showed that the three phenolic compounds increased the relative abundances of Escherichia/Shigella, Enterococcus, Klebsiella, etc., and isookanin notably increased the relative abundance of Bifidobacterium and Lactobacillus. DISCUSSION AND CONCLUSIONS: SCPs exhibited antioxidant properties and potential prebiotic effects on modulating the gut microbiota composition. The findings indicated that SCPs consumption could exert prebiotic activity that is beneficial for human health.


Asunto(s)
Chrysanthemum , Coreopsis , Microbioma Gastrointestinal , Antioxidantes/química , Chrysanthemum/química , Coreopsis/química , Humanos , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/análisis , Polifenoles/farmacología
17.
Plant Physiol Biochem ; 186: 107-120, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35835077

RESUMEN

Flat peach fruit are cold-sensitive and vulnerable to chilling injury (CI), particularly internal browning (IB) during cold storage, which limits the consumer acceptance and market value of the fruit. Controlled atmosphere (CA) has been used to alleviate IB in fruit. However, the mechanisms of CA on IB in peach remains unknown. This study investigated the effects of CA (3-3.5% Oxygen, 3-3.5% Carbon dioxide, and 93-94% nitrogen) treatment on IB development, sugar metabolism, and energy metabolism in cold-stored (1 ± 0.5 °C) peach. The CA treatment effectively inhibited the development of IB and markedly inhibited the reduction of sugar contents and energy charge. The protein expression of the V-type proton ATPase subunit was significantly inhibited by the CA treatment, accompanied by higher adenosine triphosphate (ATP) content, and energy charge than the control fruit. Notably, the expressions of the pyruvate kinase family of proteins, pyruvate decarboxylases, and sucrose synthase were induced by CA treatment that had complex protein interactions with the ATPase and the energy metabolism pathway. These results indicated that CA treatment enhanced the chilling tolerance attributed to maintaining higher levels of energy status and sugar contents by regulating the expression of key proteins involved in energy metabolism during cold storage and shelf life. Taken together, our study can provide theoretical support for the research and development of fresh-keeping and cold-chain logistics technology.


Asunto(s)
Prunus persica , Adenosina Trifosfatasas/metabolismo , Atmósfera , Frío , Almacenamiento de Alimentos , Frutas/metabolismo , Prunus persica/metabolismo , Azúcares/metabolismo
18.
Life Sci ; 292: 119552, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932446

RESUMEN

AIMS: Heart failure (HF) is a progressive disease with recurrent hospitalizations and high mortality. However, the mechanisms underlying HF remain unclear. The present study aimed to explore the regulatory mechanism of histone deacetylase 3 (HDAC3) and DNA methyltransferase 1 (DNMT1)/Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1) axis in HF. METHODS: The HF rat models and hypertrophy cell models were established. The characteristic parameters of the heart were detected by echocardiography. A multichannel physiological signal acquisition system was used to detect the hemodynamic parameters. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of HDAC3, DNMT1, and SHP-1 mRNAs, while Western blot was applied to analyze the expression of proteins. Masson staining was used to analyze the degree of collagen fiber infiltration. TdT-mediated DUTP nick end labeling (TUNEL) staining was performed to analyze the apoptosis of myocardial tissue cells. Co-immunoprecipitation (co-IP) was conducted to study the interaction between HDAC3 and DNMT1. Flow cytometry was used to analyze the apoptosis. KEY FINDINGS: HDAC3 and DNMT1 were highly expressed in HF rat and hypertrophy cell models. HDAC3 modified DNMT1 through deacetylation to inhibit ubiquitination-mediated degradation, which promoted the expression of DNMT1. DNMT1 inhibited SHP-1 expression via methylation in the promoter region. In summary, HDAC3 modified DNMT1 by deacetylation to suppress SHP-1 expression, which in turn led to the development of cardiomyocyte hypertrophy-induced HF. SIGNIFICANCE: This study provided potential therapeutic targets for HF treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/fisiología , Insuficiencia Cardíaca/metabolismo , Histona Desacetilasas/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/fisiología , Animales , Animales Recién Nacidos , Metilación de ADN , Masculino , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
19.
Eur J Pharmacol ; 915: 174601, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34699756

RESUMEN

Long non-coding RNAs (LncRNAs) are essential regulators in the occurrence and development of AS. Here we aim to explore the underlying molecular mechanism of LncRNA SNHG16 in regulating ox-LDL-induced VSMC proliferation, migration and invasion. After constructing AS in vivo and in vitro models, the expressions of SNHG16, miR-22-3p, HMBG2, proliferation- and metastasis-related proteins were determined by qRT-PCR and Western blot assays. Detection of serological lipids, H&E and Masson staining analysis were conducted to evaluate the AS injury in mice. The effects of ox-LDL treatment on VSMCs were examined by CCK-8, wound scratch and Transwell Chamber assays. The targeted relationship was measured by luciferase reporter and RIP assays. The results showed that SNHG16 and high-mobility group box 2 (HMGB2) expressions were increased while miRNA-22-3p expression was decreased in AS mice and ox-LDL-stimulated VSMCs. Functionally, sh-SNHG16 restrained ox-LDL-induced VSMC growth and migration. SNHG16 suppressed miRNA-22-3p expression by direct binding. Furthermore, in ox-LDL-treated VSMCs, miRNA-22-3p mimic prevented proliferation, migration, and invasion. Further explorations showed that HMGB2 was a target of miRNA-22-3p, SNHG16 upregulated HMGB2 levels by acting as a competing endogenous RNA (ceRNA) of miRNA-22-3p. More importantly, sh-HMGB2 partially reversed the effects of sh-SNHG16 together with miR-22-2p inhibitor on ox-LDL-induced VSMC proliferation, migration and invasion. Collectively, SNHG16 accelerated atherosclerotic plaque (AP) formation and enhanced ox-LDL-activated VSMCs proliferation and migration by miRNA-22-3p/HMGB2 axis.


Asunto(s)
ARN Largo no Codificante
20.
Curr Pharm Biotechnol ; 23(8): 1080-1093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34636307

RESUMEN

BACKGROUND: Sleep curtailment is a serious problem in many societies. Clinical evidence has shown that sleep deprivation is associated with mood dysregulation, formation of false memory, cardio-metabolic risk factors and outcomes, inflammatory disease risk, and all-cause mortality. The affective disorder dysregulation caused by insufficient sleep has become an increasingly serious health problem. However, to date, not much attention has been paid to the mild affective dysregulation caused by insufficient sleep, and there is no clear and standard therapeutic method to treat it. The Xiaoyao Pill is a classic Chinese medicinal formula, with the effect of dispersing stagnated hepatoqi, invigorating the spleen, and nourishing the blood. Therefore, it is most commonly used to treat gynecological diseases in China. In the present study, the effects of the Xiaoyao Pill on affective dysregulation of sleep-deprived mice and its underlying molecular mechanisms were investigated. METHODS: Forty adult female mice were used in the present study. The sleep deprivation model was established by improving the multi-platform water environment method. After 7 consecutive days of sleep deprivation, the mice were administrated low (LXYP, 0.32mg/kg) and high (HXYP, 0.64 mg/kg) doses of the Xiaoyao Pill for two weeks. Then, the body weight, behavioral deficits, and histopathology were evaluated. Meanwhile, the expression of c-fos protein and the concentrations of monoamine neurotransmitters in the hippocampus and prefrontal cortex were determined after two weeks of treatment. RESULTS: Xiaoyao Pill treatment significantly increased body weight and sucrose consumption and decreased the irritability scores of the sleep-deprived mice. Meanwhile, Xiaoyao Pill treatment prevented brain injury and inhibited the expression of c-fos protein in the hippocampus and prefrontal cortex. In addition, HXYP treatment significantly upregulated the levels of NE in the hippocampus and prefrontal cortex (p < 0.01). LXYP treatment significantly up-regulated the levels of 5-HT in the prefrontal cortex. Meanwhile, both HXYP and LXYP treatment significantly upregulated the levels of DA in the prefrontal cortex (p < 0.05 or p < 0.01) of sleep-deprived mice. CONCLUSION: The present study demonstrates that Xiaoyao Pill treatment prevented the behavioral deficits of mice induced by sleep deprivation by promoting the recovery of brain tissue injury and up-regulating the levels of NE, 5-HT, and DA in the brain tissue.


Asunto(s)
Lesiones Encefálicas , Privación de Sueño , Animales , Peso Corporal , Lesiones Encefálicas/metabolismo , Medicamentos Herbarios Chinos , Femenino , Hipocampo , Ratones , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/farmacología , Serotonina/metabolismo , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA