Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 658-662, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38926950

RESUMEN

OBJECTIVE: To investigate the effect of TLK2 expression regulated by miR-21 on proliferation and apoptosis of acute myeloid leukemia cells. METHODS: Seventy patients with AML admitted to our hospital from January 2019 to July 2022 were selected, while 30 patients with iron deficiency anemia were selected as the control group. Bone marrow mononuclear cells (BMMNCs) of the patients were obtained using Ficoll density gradient centrifugation. RT-qPCR was used to determine the expression levels of miR-21 and TLK2 mRNA in BMMNCs. Mimics-miR-21, mimics-NC, inhibitor-miR-21, inhibitor-NC and NC were transfected into HL-60 cells using liposome-mediated transfection technology. CCK-8 method was used to determine the activity of transfected HL-60 cells after treatment with cytarabine. The apoptosis rate of HL-60 transfected cells was determined by TUNEL method. The expression of TLK2 mRNA in HL-60 cells transfected with inhibitor-miR-21 was determined by RT-qPCR. RESULTS: The relative expression levels of miR-21 and TLK2 mRNA in BMMNCs of AML patients were significantly higher than those of controls (both P < 0.05). After HL-60 cells were treated with cytarabine, both the cell activity of inhibitor-miR-21 group and mimics-miR-21 group decreased significantly with the increase of cytarabine concentration (both P < 0.05). However, at each concentration point of cytarabine, the cell activity of inhibitor-miR-21 group was lower than that of control group (P < 0.05), while mimics-miR-21 group was higher than control group (P < 0.05). After HL-60 cells were treated with cytarabine, the apoptosis rate of inhibitor-miR-21 group was significantly increased (P < 0.05), while that of mimics-miR-21 group was significantly decreased (P < 0.05). After HL-60 cells were treated with inhibitor-miR-21, the relative expression of TLK2 mRNA decreased significantly (P < 0.05). CONCLUSION: miR-21 is highly expressed in AML patients, which may promote the apoptosis of AML cells by inhibiting the expression of TLK2.


Asunto(s)
Apoptosis , Proliferación Celular , Leucemia Mieloide Aguda , MicroARNs , Humanos , Citarabina/farmacología , Células HL-60 , Leucemia Mieloide Aguda/genética , MicroARNs/genética , Transfección
2.
Sci Total Environ ; 935: 173303, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761948

RESUMEN

Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.


Asunto(s)
Biomarcadores , Cadmio , Oligoquetos , Contaminantes del Suelo , Sulfametoxazol , Oligoquetos/efectos de los fármacos , Oligoquetos/fisiología , Animales , Sulfametoxazol/toxicidad , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biomarcadores/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
3.
Cancer Res ; 84(9): 1460-1474, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593213

RESUMEN

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.


Asunto(s)
Proliferación Celular , Factor 1 de Elongación Peptídica , Biosíntesis de Proteínas , ARN Largo no Codificante , ARN de Transferencia , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Ratones , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
4.
Immunol Lett ; 263: 70-77, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797724

RESUMEN

Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Hepatitis Autoinmune , Humanos , Ratones , Animales , Sulfato de Dextran/efectos adversos , Hepatitis Autoinmune/etiología , Hepatitis Autoinmune/patología , Disbiosis/microbiología , Ratones Endogámicos C57BL , Inflamación/patología , Modelos Animales de Enfermedad , Colon/patología
5.
Eur J Med Chem ; 258: 115606, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402343

RESUMEN

The interleukin-1 receptor associated kinase 4 (IRAK-4) is a member of serine-threonine kinase family, which plays an important role in the regulation of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs) related signaling pathways. At present, the IRAK-4 mediated inflammation and related signaling pathways contribute to inflammation, which are also responsible for other autoimmune diseases and drug resistance in cancers. Therefore, targeting IRAK-4 to develop single-target, multi-target inhibitors and proteolysis-targeting chimera (PROTAC) degraders is an important direction for the treatment of inflammation and related diseases. Moreover, insight into the mechanism of action and structural optimization of the reported IRAK-4 inhibitors will provide the new direction to enrich the clinical therapies for inflammation and related diseases. In this comprehensive review, we introduced the recent advance of IRAK-4 inhibitors and degraders with regards to structural optimization, mechanism of action and clinical application that would be helpful for the development of more potent chemical entities against IRAK-4.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Transducción de Señal , Receptores Toll-Like , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-1/metabolismo
6.
Acta Pharmacol Sin ; 44(10): 2048-2064, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225848

RESUMEN

Autoimmune hepatitis (AIH) is a progressive hepatitis syndrome characterized by high transaminase levels, interface hepatitis, hypergammaglobulinemia, and the presence of autoantibodies. Misdiagnosis or delayed treatment of AIH can lead to cirrhosis or liver failure, which poses a major risk to human health. ß-Arrestin2, a key scaffold protein for intracellular signaling pathways, has been found to be involved in many autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. However, whether ß-arrestin2 plays a role in AIH remains unknown. In the present study, S-100-induced AIH was established in both wild-type mice and ß-arrestin2 knockout (Arrb2 KO) mice, and the experiments identified that liver ß-arrestin2 expression was gradually increased, and positively correlated to serum ANA, ALT and AST levels during AIH progression. Furthermore, ß-arrestin2 deficiency ameliorated hepatic pathological damage, decreased serum autoantibody and inflammatory cytokine levels. ß-arrestin2 deficiency also inhibited hepatocyte apoptosis and prevented the infiltration of monocyte-derived macrophages into the damaged liver. In vitro experiments revealed that ß-arrestin2 knockdown suppressed the migration and differentiation of THP-1 cells, whereas ß-arrestin2 overexpression promoted the migration of THP-1 cells, which was regulated by the activation of the ERK and p38 MAPK pathways. In addition, ß-arrestin2 deficiency attenuated TNF-α-induced primary hepatocyte apoptosis by activating the Akt/GSK-3ß pathway. These results suggest that ß-arrestin2 deficiency ameliorates AIH by inhibiting the migration and differentiation of monocytes, decreasing the infiltration of monocyte-derived macrophages into the liver, thereby reducing inflammatory cytokines-induced hepatocytes apoptosis. Therefore, ß-arrestin2 may act as an effective therapeutic target for AIH.


Asunto(s)
Hepatitis Autoinmune , Hepatopatías , Arrestina beta 2 , Animales , Ratones , Apoptosis , Autoanticuerpos/metabolismo , Arrestina beta 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hepatitis Autoinmune/diagnóstico , Hepatitis Autoinmune/tratamiento farmacológico , Hepatocitos/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Macrófagos/metabolismo , Proteínas S100/metabolismo
7.
Environ Pollut ; 327: 121553, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023889

RESUMEN

Cadmium (Cd) contamination in food has raised broad concerns in food safety and human health. The toxicity of Cd to animals/humans have been widely reported, yet little is known about the health risk of dietary Cd intake at the epigenetic level. Here, we investigated the effect of a household Cd-contaminated rice (Cd-rice) on genome-wide DNA methylation (DNAm) changes in the model mouse. Feeding Cd-rice increased kidney Cd and urinary Cd concentrations compared with the Control rice (low-Cd rice), whereas supplementation of ethylenediamine tetraacetic acid iron sodium salt (NaFeEDTA) in the diet significantly increased urinary Cd and consequently decreased kidney Cd concentrations. Genome-wide DNAm sequencing revealed that dietary Cd-rice exposure caused the differentially methylated sites (DMSs), which were mainly located in the promoter (32.5%), downstream (32.5%), and intron (26.1%) regions of genes. Notably, Cd-rice exposure induced hypermethylation at the promoter sites of genes Caspase-8 and interleukin-1ß (Il-1ß), and consequently, their expressions were down-regulated. The two genes are critical in apoptosis and inflammation, respectively. In contrast, Cd-rice induced hypomethylation of the gene midline 1 (Mid1), which is vital to neurodevelopment. Furthermore, 'pathways in cancer' was significantly enriched as the leading canonical pathway. Supplementation of NaFeEDTA partly alleviated the toxic symptoms and DNAm alternations induced by Cd-rice exposure. These results highlight the broad effects of elevated dietary Cd intake on the level of DNAm, providing epigenetic evidence on the specific endpoints of health risks induced by Cd-rice exposure.


Asunto(s)
Enfermedades Metabólicas , Neoplasias , Oryza , Contaminantes del Suelo , Ratones , Humanos , Animales , Metilación de ADN , Cadmio/análisis , Oryza/metabolismo , Contaminantes del Suelo/análisis , Ingestión de Alimentos , Neoplasias/inducido químicamente , Neoplasias/genética
8.
Proc Natl Acad Sci U S A ; 119(49): e2208904119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36445966

RESUMEN

The protooncoprotein N-Myc, which is overexpressed in approximately 25% of neuroblastomas as the consequence of MYCN gene amplification, has long been postulated to regulate DNA double-strand break (DSB) repair in neuroblastoma cells, but experimental evidence of this function is presently scant. Here, we show that N-Myc transcriptionally activates the long noncoding RNA MILIP to promote nonhomologous end-joining (NHEJ) DNA repair through facilitating Ku70-Ku80 heterodimerization in neuroblastoma cells. High MILIP expression was associated with poor outcome and appeared as an independent prognostic factor in neuroblastoma patients. Knockdown of MILIP reduced neuroblastoma cell viability through the induction of apoptosis and inhibition of proliferation, retarded neuroblastoma xenograft growth, and sensitized neuroblastoma cells to DNA-damaging therapeutics. The effect of MILIP knockdown was associated with the accumulation of DNA DSBs in neuroblastoma cells largely due to decreased activity of the NHEJ DNA repair pathway. Mechanistical investigations revealed that binding of MILIP to Ku70 and Ku80 increased their heterodimerization, and this was required for MILIP-mediated promotion of NHEJ DNA repair. Disrupting the interaction between MILIP and Ku70 or Ku80 increased DNA DSBs and reduced cell viability with therapeutic potential revealed where targeting MILIP using Gapmers cooperated with the DNA-damaging drug cisplatin to inhibit neuroblastoma growth in vivo. Collectively, our findings identify MILIP as an N-Myc downstream effector critical for activation of the NHEJ DNA repair pathway in neuroblastoma cells, with practical implications of MILIP targeting, alone and in combination with DNA-damaging therapeutics, for neuroblastoma treatment.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Neuroblastoma , ARN Largo no Codificante , Humanos , ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , ARN Largo no Codificante/genética
9.
Huan Jing Ke Xue ; 43(8): 4292-4300, 2022 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-35971725

RESUMEN

In order to improve the phytoextraction efficiency of Xanthium sibiricum on farmland soil that had been contaminated by Cd and As, this study explored the effects of chelating agents and organic acids (EDTA, SAP, CA, and MA) on the extraction of Cd and As heavy metals using X. sibiricum. The results showed that the four different chelating agents and organic acids had little effect on the biomass of the roots, stems, and leaves of X. sibiricum. However, they had different effects on the concentrations and accumulation of Cd and As in various organs of X. sibiricum. Compared with the those in the CK treatment, EDTA, SAP, CA, and MA significantly increased the Cd concentrations in the leaves of X. sibiricum by 44.1%, 32.4%, 41.2%, and 38.2% and the As concentrations in the roots of X. sibiricum by 89.6%, 7.4%, 94.8%, and 61.5%, respectively. The four treatments (EDTA, SAP, CA, and MA) improved the total Cd accumulation of X. sibiricum, with increasing ranges, respectively, of 70.2%, 29.4%, 28.9%, and 33.1%, and the As accumulation increased by 67.0%, 19.6%, 81.9%, and 40.8%, respectively, compared with that of the CK treatment. The four chelating agents and organic acids had different effects on the Cd and As bioconcentration factor and transfer factor of various organs of X. sibiricum. Treatments with EDTA, SAP, CA, and MA resulted in a decrease of 32.7%-38.2% in soil Cd concentrations and a decrease of 14.6%-20.5% in soil As concentrations. These four chelating agents can be used for enhancing the efficiency of extraction Cd and As heavy metals by X. sibiricum.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Xanthium , Biodegradación Ambiental , Cadmio/análisis , Quelantes/farmacología , Ácido Edético/farmacología , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
10.
Bioorg Chem ; 127: 105908, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728291

RESUMEN

Thirty-two novel DG F-spiroacetal ring-opening derivatives, including 24 acetylated derivatives and 8 nitrogenous derivatives, were designed and synthesized from diosgenin (DG). The cytotoxicity of the novel derivatives was evaluated by MTT assay, except for compounds 4a, 4e, 4i, 4 l, 5a and 5 h, which were potentially cytotoxic to RAW264.7 cells, all the other derivatives had no significant cytotoxicity. The NO release inhibitory activities of novel derivatives were screened by Griess method. The results showed that the anti-inflammatory activity of the DG acetylated derivatives was stronger than the nitrogenous derivatives, and 4a-4 m containing acetyl groups at the 3-position may have better anti-inflammatory effects than 5a-5 k containing free hydroxyl groups. In ELISA assay, compound 4 m exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by LPS with IC50 values 0.449 ± 0.050 µM. The results of docking experiments showed that 4 m has a good affinity for p65 protein.


Asunto(s)
Antineoplásicos , Diosgenina , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Diosgenina/farmacología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
11.
Neurol Sci ; 43(4): 2785-2790, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34709479

RESUMEN

OBJECTIVE: Myasthenia gravis (MG) is an autoimmune disorder whose main symptoms are muscle weakness and fatigue. Irisin is a novel skeletal muscle-derived myokine participating in several physiological and pathological processes. The initial objective of the project was to explore serum levels of irisin in patients with MG, as well as its correlation with disease severity. METHODS: We retrospectively evaluated serum levels of irisin in 77 MG patients and 57 healthy controls (HCs) by enzyme-linked immunosorbent assay. Further, clinical parameters were measured properly. RESULTS: Serum irisin levels were significantly elevated in MG patients compared with HCs (p < 0.001). Furthermore, serum irisin levels were associated with the myasthenia gravis activities of daily living score in ocular myasthenia gravis (OMG) patients (r = 0.476, p = 0.004), but there was no relationship to be considered of any relevant value in generalized myasthenia gravis (GMG) patients. Acetylcholine receptor antibody-positive MG patients had higher serum irisin levels compared with HCs. Thymoma, endotracheal intubation, or intensive care unit treatments subsequently were not found to have effect on serum levels of irisin, but tendencies of increase were observed in negative ones. CONCLUSIONS: Serum irisin levels were elevated in patients with MG, suggesting its possible involvement in MG. And irisin is expected to be a signal to evaluate the activities of daily living of OMG patients, while its effect needs further study.


Asunto(s)
Actividades Cotidianas , Fibronectinas , Miastenia Gravis , Autoanticuerpos/sangre , Fibronectinas/sangre , Humanos , Miastenia Gravis/sangre , Miastenia Gravis/diagnóstico , Receptores Colinérgicos/inmunología , Estudios Retrospectivos
12.
Nat Commun ; 12(1): 3734, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145290

RESUMEN

Genomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. This is, at least in part, responsible for PLANE-mediated promotion of cancer cell proliferation and tumorigenicity. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.


Asunto(s)
Empalme Alternativo/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Células A549 , Línea Celular Tumoral , Proliferación Celular/genética , Cromosomas Humanos Par 3/genética , Variaciones en el Número de Copia de ADN/genética , Factor de Transcripción E2F1/metabolismo , Células HCT116 , Ribonucleoproteína Heterogénea-Nuclear Grupo M/genética , Humanos , Células MCF-7 , Neoplasias/patología , Co-Represor 2 de Receptor Nuclear/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
J Inflamm Res ; 14: 1575-1590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907438

RESUMEN

Fibrosis is the final stage of the development of chronic inflammation. It is characterized by excessive deposition of the extracellular matrix, leading to tissue structure damage and organ dysfunction, which is a serious threat to human health and life. However, the molecular mechanism of fibrosis is still unclear. Inflammasome is a molecular complex of proteins that has been becoming a key innate sensor for host immunity and is involved in pyroptosis, pathogen infection, metabolic syndrome, cellular stress, and tumor metastasis. Inflammasome signaling and downstream cytokine responses mediated by the inflammasome have been found to play an important role in fibrosis. The inflammasome regulates the secretion of IL-1ß and IL-18, which are both critical for the process of fibrosis. Recently, researches on the function of inflammasome have attracted extensive attention, and data derived from these researches have increased our understanding of the effects and regulation of inflammasome during fibrosis. In this review, we emphasize the growing evidence for both indirect and direct effects of inflammasomes in triggering fibrosis as well as potential novel targets for antifibrotic therapies.

14.
Sci Total Environ ; 761: 143262, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218811

RESUMEN

Consumption of rice (Oryza sativa) grain is a major pathway by which humans are exposed to Cd, especially in non-smoking Asian populations. Although the stable isotope signatures of Cd offer a potential tool for tracing its sources, little is known about the isotopic fractionation of Cd across the entire soil-rice-human continuum. Cadmium isotope ratios were determined in field soils, rice grain, and human urine collected from two Cd-contaminated regions in southern China. Additionally, Cd isotopic fractionation in rice plants was investigated using two transgenic plants differing in Cd uptake and accumulation. Analysis of isotope ratios revealed a preferential enrichment of the heavy Cd isotopes from soil to rice grain (δ114/110Cdgrain-soil = +0.40‰) and from grain to urine (δ114/110Cdurine-grain = +0.40‰) in both regions. The first increase was mainly caused by partitioning between the soil solid phase and the soil solution, with heavier Cd preferentially enriching in the soil solution. Within the rice plant, we identified multiple processes that alter the isotope ratio, but the net effect throughout the plant was comparatively small. Cd fractionation in humans is presumably due to the preferential enrichment of heavier Cd isotopes by metal transporters DMT1 and ZIP8 (responsible for the absorption of Cd into body from the foods). These findings provide important insights into the Cd isotopic fractionation through the soil-rice-human continuum and are helpful for tracing the sources of Cd.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , China , Humanos , Isótopos , Suelo , Contaminantes del Suelo/análisis
15.
BMC Cancer ; 20(1): 740, 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770988

RESUMEN

BACKGROUND: Precision oncology pharmacotherapy relies on precise patient-specific alterations that impact drug responses. Due to rapid advances in clinical tumor sequencing, an urgent need exists for a clinical support tool that automatically interprets sequencing results based on a structured knowledge base of alteration events associated with clinical implications. RESULTS: Here, we introduced the Oncology Pharmacotherapy Decision Support System (OncoPDSS), a web server that systematically annotates the effects of alterations on drug responses. The platform integrates actionable evidence from several well-known resources, distills drug indications from anti-cancer drug labels, and extracts cancer clinical trial data from the ClinicalTrials.gov database. A therapy-centric classification strategy was used to identify potentially effective and non-effective pharmacotherapies from user-uploaded alterations of multi-omics based on integrative evidence. For each potentially effective therapy, clinical trials with faculty information were listed to help patients and their health care providers find the most suitable one. CONCLUSIONS: OncoPDSS can serve as both an integrative knowledge base on cancer precision medicine, as well as a clinical decision support system for cancer researchers and clinical oncologists. It receives multi-omics alterations as input and interprets them into pharmacotherapy-centered information, thus helping clinicians to make clinical pharmacotherapy decisions. The OncoPDSS web server is freely accessible at https://oncopdss.capitalbiobigdata.com .


Asunto(s)
Bases de Datos Factuales , Sistemas de Apoyo a Decisiones Clínicas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Medicina de Precisión , Navegador Web , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Anotación de Secuencia Molecular , Interfaz Usuario-Computador
16.
MycoKeys ; 49: 99-129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31043854

RESUMEN

Palms represent the most morphological diverse monocotyledonous plants and support a vast array of fungi. Recent examinations of palmicolous fungi in Thailand led to the discovery of a group of morphologically similar and interesting taxa. A polyphasic approach based on morphology, multi-gene phylogenetic analyses and divergence time estimates supports the establishment of a novel pleosporalean family Striatiguttulaceae, which diversified approximately 39 (20-63) MYA (crown age) and 60 (35-91) MYA (stem age). Striatiguttulaceae is characterized by stromata or ascomata with a short to long neck, trabeculate pseudoparaphyses and fusiform to ellipsoidal, 1-3-septate ascospores, with longitudinal striations and paler end cells, surrounded by a mucilaginous sheath. Multi-gene phylogenetic analysis showed that taxa of Striatiguttulaceae form a well-supported and distinct monophyletic clade in Pleosporales, and related to Ligninsphaeriaceae and Pseudoastrosphaeriellaceae. However, these families can be morphologically demarcated by the slit-like ascomata and extremely large ascospores in Ligninsphaeriaceae and the rather narrow fusiform ascospores in Pseudoastrosphaeriellaceae. Eight strains of Striatiguttulaceae formed two monophyletic sub-clades, which can be recognized as Longicorpus gen. nov. and Striatiguttula gen. nov. Morphologically, the genus Longicorpus can be differentiated from Striatiguttula by its elongated immersed ascomata and fusiform ascospores with relatively larger middle cells and paler end cells. Two new species Striatiguttulanypae and S.phoenicis, and one new combination, Longicorpusstriataspora are introduced with morphological details, and phylogenetic relationships are discussed based on DNA sequence data.

17.
Nat Prod Res ; 33(19): 2860-2863, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30445850

RESUMEN

Six compounds, benzyl 3-O-ß-D-glucopyranosyl-7-hydroxybenzoate (1), spathulenol (2), 1,7,8-trihydroxy-2-naphtaldehyde (3), quercetin (4), astragalin (5) and 2-methoxy-4-(2-propenyl)phenyl ß-D-glucoside (6), were isolated from the leaves of Melia azedarach L. The structure elucidation of compound 1 was discussed in detail based on its 2D-NMR data. Compound 1 showed weak cytotoxicity against the cell lines of T-24, NCI-H460, HepG2, SMMC-7721, CNE, MDA-MB-231 and B16F10 with the inhibition rates from 10.01% to 34.05% at the concentration of 80 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Melia azedarach/química , Hojas de la Planta/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glucósidos/química , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Células Hep G2 , Humanos , Quempferoles/química , Quempferoles/aislamiento & purificación , Quempferoles/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA