Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
J Cancer ; 15(17): 5839-5840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308688

RESUMEN

[This corrects the article DOI: 10.7150/jca.19723.].

2.
J Transl Med ; 22(1): 861, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334238

RESUMEN

BACKGROUND: Gene methylation and the immune-related tumor microenvironment (TME) are highly correlated in tumor progression and therapeutic efficacy. Although both of them can be used to predict the clinical outcomes of colorectal cancer (CRC) patients, their predictive value is still unsatisfactory. Whether a combination risk model comprising these two prediction parameters performs better predictive effectiveness than independent factor is still unclear. Methylated Septin9 (mSEPT9) is an early diagnosis biomarker of CRC, in this study, we aimed to investigate mSEPT9-related biomarkers of immunosuppressive TME and identify the value of the combination risk model in predicting the clinical outcomes of CRC. METHODS: Immunofluorescence staining was performed to clarify the correlation between intratumoral IL-10+ Treg infiltration and mSEPT9 in peripheral blood. Survival time, response to 5-fluorouracil (5-FU)-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis were analyzed in study (197 CRC samples) and validation (195 CRC samples) sets to evaluate the efficacy of combination risk model. Potential mechanisms were explored by mRNA sequencing. RESULTS: Hypermethylated SEPT9 in the peripheral blood of patients with CRC (stage I-III, and stage IV with resectable M1) before radical resection was positively correlated with high intratumoral IL-10+ Treg infiltration. The high-risk model revealed poor overall survival and progression-free survival, inferior therapeutic response to 5-FU-based chemotherapy and PD-1 blockade, and high probability of recurrence or metastasis. The underlying mechanisms may be associated with the increase in mSEPT9 and mediation of IL-10 via methionine metabolic reprogramming-induced infiltration of IL-10+ Tregs in the TME, which promotes tumor progression and resistance to 5-FU-based chemotherapy and PD-1 blockade. CONCLUSIONS: The combination risk model of peripheral mSETP9 and intratumoral IL-10+ Treg infiltration in CRC can effectively predict prognosis, responsiveness to 5-FU-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis. Therefore, this model can be used for precision treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Interleucina-10 , Nomogramas , Septinas , Linfocitos T Reguladores , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Septinas/genética , Septinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Linfocitos T Reguladores/inmunología , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Microambiente Tumoral/inmunología , Pronóstico , Anciano , Fluorouracilo/uso terapéutico
5.
Pathol Res Pract ; 260: 155384, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850874

RESUMEN

OBJECTIVE: To investigate the association between Helicobacter pylori infection and GDF6 expression in gastric cancer patients, and to determine its influence on prognosis and resistance to capecitabine. METHODS: Tumor and adjacent non-tumor tissues were collected from 148 gastric cancer patients who underwent surgery in our department from October 2019 to June 2022. Of these patients, 78 tested positive for Helicobacter pylori and 70 tested negative. Hematoxylin-eosin (HE) and immunofluorescence staining were utilized to quantify GDF6 expression in cancerous and adjacent tissues. Patient prognosis was monitored via follow-up. Western blotting analyzed GDF6 expression in common gastric cancer cell lines. HGC27 cells exhibiting high GDF6 expression and BGC823 cells with low expression were used to create GDF6-silenced and overexpressed cell lines. The impact of GDF6 on the proliferation, migration, invasion, and cloning abilities of gastric cancer cells was evaluated using the CCK-8 assay, scratch test, Transwell assay, and plate colony formation assay. Fluorescent quantitative PCR and Western blotting assessed the effects of GDF6 levels on epithelial-mesenchymal transition (EMT) and tumor cell stemness. RESULTS: GDF6 expression in gastric cancer tissues was significantly correlated with cancer grading and staging (P<0.05). Helicobacter pylori-positive tissues exhibited significantly higher GDF6 expression levels than negative samples (P<0.05). Kaplan-Meier survival analysis indicated that high GDF6 expression was associated with poor survival prognosis. Overexpressed GDF6 enhanced the proliferation, migration, and invasion abilities of gastric cancer cells, while silencing GDF6 yielded opposite results. Increased GDF6 expression upregulated TGF-ß expression and the phosphorylation levels of SMAD3, leading to an elevation in mesenchymal cell markers N-cadherin, vimentin, and a reduction in epithelial cell markers cytokeratins, E-cadherin. Moreover, high GDF6 levels contributed to increased resistance to capecitabine and enhanced the expression of tumor stem cell markers Nanog, Sox-2, Oct-4, CD44, amplifying tumor cell stemness. CONCLUSION: Helicobacter pylori infection is associated with increased GDF6 expression in gastric cancer tissue, correlating with poor survival prognosis. Elevated GDF6 expression promotes the proliferation, migration, and invasion abilities of gastric cancer cells, facilitates EMT via the TGF-ß/SMAD3 pathway, and intensifies cell stemness and capecitabine resistance. Consequently, GDF6 presents itself as a potential new target for gastric cancer treatment. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available from the corresponding author upon reasonable request.


Asunto(s)
Transición Epitelial-Mesenquimal , Infecciones por Helicobacter , Helicobacter pylori , Transducción de Señal , Proteína smad3 , Neoplasias Gástricas , Factor de Crecimiento Transformador beta , Neoplasias Gástricas/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/metabolismo , Humanos , Femenino , Masculino , Persona de Mediana Edad , Infecciones por Helicobacter/patología , Infecciones por Helicobacter/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína smad3/metabolismo , Anciano , Regulación hacia Arriba , Proliferación Celular , Pronóstico , Línea Celular Tumoral , Capecitabina/farmacología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos , Adulto
6.
BMC Cancer ; 24(1): 582, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741069

RESUMEN

BACKGROUND: Local recurrence after surgery and radiochemotherapy seriously affects the prognosis of locally advanced rectal cancer (LARC) patients. Studies on molecular markers related to the radiochemotherapy sensitivity of cancers have been widely carried out, which might provide valued information for clinicians to carry out individual treatment. AIM: To find potential biomarkers of tumors for predicting postoperative recurrence. METHODS: In this study, LARC patients undergoing surgery and concurrent radiochemotherapy were enrolled. We focused on clinicopathological factors and PTEN, SIRT1, p-4E-BP1, and pS6 protein expression assessed by immunohistochemistry in 73 rectal cancer patients with local recurrence and 76 patients without local recurrence. RESULTS: The expression of PTEN was higher, while the expression of p-4E-BP1 was lower in patients without local recurrence than in patients with local recurrence. Moreover, TNM stage, lymphatic vessel invasion (LVI), PTEN and p-4E-BP1 might be independent risk factors for local recurrence after LARC surgery combined with concurrent radiochemotherapy. CONCLUSIONS: This study suggests that PTEN and p-4E-BP1 might be potential biomarkers for prognostic prediction and therapeutic targets for LARC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Biomarcadores de Tumor , Proteínas de Ciclo Celular , Quimioradioterapia , Recurrencia Local de Neoplasia , Fosfohidrolasa PTEN , Neoplasias del Recto , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/metabolismo , Fosfohidrolasa PTEN/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Quimioradioterapia/métodos , Biomarcadores de Tumor/metabolismo , Anciano , Pronóstico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Adulto , Estadificación de Neoplasias
7.
Cancer Med ; 13(8): e7133, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634216

RESUMEN

BACKGROUND: Compliance with colonoscopy among elderly individuals participating in colorectal cancer (CRC) screening programs is unsatisfactory, despite a high detection rate of bowel-related diseases. In this study, our aim was to analyze the impact of risk factors on the trends of compliance and detection rates in colonoscopy among high-risk individuals aged 60-74. METHODS: A retrospective study was conducted on the high-risk individuals aged 60-74 participating in the 2021 CRC screening program in Tianjin, China. Logistic regression analyses, including both univariate and multivariate analyses, were performed to explore the impact of different risk factors on colonoscopy compliance among the high-risk individuals. Besides, the study investigated the influence of various risk factors on the detection rates of bowel-related diseases among the high-risk individuals who underwent colonoscopy. RESULTS: A total of 24,064 high-risk individuals were included, and 5478 individuals received a free colonoscopy, with an overall compliance of 22.76%. Among them, the adenoma detection rate was 55.46%. Males and individuals with a positive FIT had high compliance and detection rates for CRC, advanced adenomas (AA), advanced colorectal neoplasia (ACN), and colorectal neoplasm (CN). Individuals aged 70-74 were associated with low compliance but high CRC, ACN, and CN detection rates. Individuals who reported a history of chronic constipation, bloody mucous, and CRC in first-degree relative showed high compliance but no significantwere associated with the detection rates of CRC, AA, and CN. CONCLUSION: This study reported several risk factors associated with the screening behaviors for CRC. Patterns and trends in CRC, AA, ACN, and CN compliance and detection rates correlate with risk factors.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Masculino , Anciano , Humanos , Incidencia , Estudios Retrospectivos , Neoplasias Colorrectales/diagnóstico , Colonoscopía , Factores de Riesgo , Tamizaje Masivo
8.
Oncol Rep ; 51(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38456491

RESUMEN

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Asunto(s)
Cobalto , Factor de Transcripción Asociado a Microftalmía , Neoplasias , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Sumoilación , Línea Celular Tumoral , Poliploidía , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Movimiento Celular , Proliferación Celular
9.
Free Radic Biol Med ; 216: 118-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479633

RESUMEN

Anomalous vascular endothelium significantly contributes to various cardiovascular diseases. VE-cadherin plays a vital role in governing the endothelial barrier. Krüppel-like factor 4(KLF4), as a transcription factor, which binds the VE-cadherin promoter and enhances its transcription. Tumor necrosis factor receptor-associated factor 7 (TRAF7) is an E3 ubiquitin ligase that has been shown to modulate the degradation of KLF4. H2S can covalently modify cysteine residues on proteins through S-sulfhydration, thereby influencing the structure and functionality of the target protein. However, the role of S-sulfhydration on endothelial barrier integrity remains to be comprehensively elucidated. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates endothelial integrity and its underlying mechanism. In this study, we observed that protein S-sulfhydration was reduced in the endothelium during diabetes and TRAF7 was the main target. Overexpression of TRAF7-Cys327 mutant could mitigate the endothelial barrier damage by weakening TRAF7 interaction with KLF4 and reducing ubiquitination degradation of KLF4. In conclusion, our research demonstrates that H2S plays a pivotal role in regulating S-sulfhydration of TRAF7 at Cys327. This regulation effectively inhibits the ubiquitin-mediated degradation of KLF4, resulting in an upregulation of VE-cadherin levels. This molecular mechanism contributes to the prevention of endothelial barrier damage.


Asunto(s)
Diabetes Mellitus , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Ubiquitinación , Regulación de la Expresión Génica , Endotelio Vascular/metabolismo , Ubiquitina/metabolismo , Diabetes Mellitus/metabolismo
10.
Clin Transl Med ; 14(2): e1567, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38362620

RESUMEN

Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Células Gigantes/metabolismo , Células Gigantes/patología , Antineoplásicos/metabolismo , Poliploidía , Neoplasias/patología
11.
J Gastroenterol Hepatol ; 39(4): 694-700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200678

RESUMEN

BACKGROUND AND AIM: The incidence of colorectal cancer (CRC) in individuals under 50 is increasing worldwide. We conducted an analysis of colonoscopy findings in high-risk individuals under 50 in the CRC screening program in Tianjin, China, to determine the detection rate and risk factors of advanced adenomas (AA), advanced colorectal neoplasia (ACN), colorectal neoplasia (CN). METHODS: Our study investigated individuals aged 40-49 who underwent CRC screening and completed colonoscopy, 2012-2020, while the 50-54 age group served as a control. We compared the detection rates of AA, ACN, and CN among three age groups using univariate and multivariable logistic regression analyses, and investigated the risk factors associated with AA, ACN, and CN among individuals aged 40-49. RESULTS: We found a gradual increase in the detection rate of AA, ACN, and CN among individuals aged 40-54. The detection rates for AA (OR 0.58; 95% CI 0.41-0.81), ACN (OR 0.58; 95% CI 0.43-0.77), and CN (OR 0.64; 95% CI 0.56-0.74) were lower in individuals aged 40-44 compared to 45-49. The detection rates of AA (OR 1.08; 95% CI 0.87-1.34) and ACN (OR 1.12; 95% CI 0.93-1.35) in individuals aged 45-49 were comparable with 50-54. Besides, lifestyle factors, BMI, and FIT are not associated with the detection rates of AA, ACN, and CN among individuals aged 40-49. CONCLUSIONS: Our study reveals screening data in individuals under 50, indicating comparable detection rates of AA and ACN in individuals aged 45-49 and 50-54. These findings provide valuable data support for optimizing the optimal age to initiate screening.


Asunto(s)
Colonoscopía , Neoplasias Colorrectales , Humanos , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Estilo de Vida , Detección Precoz del Cáncer , Tamizaje Masivo
12.
JCO Glob Oncol ; 10: e2300188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271647

RESUMEN

PURPOSE: To evaluate the effectiveness of fecal immunochemical testing (FIT) in colorectal cancer screening. METHODS: We conducted a prospective cohort study among 5,598 participants age 40-74 years between 2012 and 2020 in Tianjin, China. Inverse probability weighting was adopted to adjust for potential imbalanced factors between groups. A Cox proportional hazards model was used to estimate the weighted associations between FIT screening and advanced colorectal neoplasia. A difference-in-difference (DID) model was adopted to compare the incidence rates of advanced colorectal neoplasia between groups. RESULTS: In DID analysis, the rate of incidence was reduced by 0.34 cases per person-years in the screening group as compared with the historical FIT screening group (rate ratio [RR], 0.08 [95% CI, 0.07 to 0.10]) and by 0.06 cases per person-years in the non-FIT screening group as compared with the historical non-FIT screening group (RR, 0.37 [95% CI, 0.29 to 0.48]; P < .001 for both comparisons), with a relative reduction of 0.28. Similar benefit effect from FIT screening was observed in sex and age subgroups. CONCLUSION: FIT screening was associated with a reduction in incidence density from advanced colorectal neoplasia.


Asunto(s)
Colonoscopía , Neoplasias Colorrectales , Humanos , Adulto , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Sangre Oculta , China/epidemiología
13.
Nano Lett ; 24(5): 1816-1824, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270101

RESUMEN

Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.


Asunto(s)
Nanosferas , Neoplasias , Puntos Cuánticos , Humanos , Detección Precoz del Cáncer , Antígeno B7-H1 , Inmunoterapia , Aprendizaje Automático , Oligonucleótidos , ADN
14.
Cell Commun Signal ; 22(1): 72, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279176

RESUMEN

Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Proliferación Celular
15.
Cancer Control ; 30: 10732748231214936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38008773

RESUMEN

BACKGROUND: More than half of the patients with locally advanced low rectal cancer exhibit no or minor response to nCRT. It is important to investigate the predictive and prognostic values of potential biomarkers in patients with locally advanced low rectal cancer receiving nCRT. MATERIALS AND METHODS: This retrospective study included 162 patients with locally advanced low rectal cancer who underwent nCRT, followed by total mesorectal excision (TME) between 2016 and 2019. Cytokeratin 7 (CK7) expression and mismatch repair (MMR) status were determined by immunohistochemistry (IHC). Categorical variables were compared using the chi-square test. Overall survival (OS) and disease-free survival (DFS) curves were estimated using the Kaplan-Meier and Cox methods. RESULTS: There were predominance significant differences in distance from anus margin (P < .0001) and circumferential extent of the tumor (P < .0001).CK7 positive expression was detected in 21 of the 162 patients (13%). The univariate and multivariate analysis revealed that patients whose tumors had CK7 positive expression had significantly shorter OS (HR = 3.878, P = .038; HR = 1.677, P = .035) and DFS (HR = 3.055, P = .027;HR = 3.569, P = .038) than those with CK7 negative expression. While patients with CK7 positive expression had a higher proportion of worse TRG compared with CK7 negative patients (P = .001). Patients with deficient mismatch repair (dMMR) just occupied a small proportion (8.6%), but there was still a close connection between the MMR status and recurrence after TME (P = .045). MMR status was an independent risk factor affecting the OS (HR = .307, P < .0001; HR = .123, P < .0001) and DFS (HR = .288, P < .0001; HR = .286, P < .0001) by univariate and multivariate analysis. But no significant difference in the proportion of TRG was observed between patients with dMMR and pMMR (P = .920). CONCLUSIONS: The result confirms negative prognostic role of CK7-positive and dMMR statuses, which have potential predictive value for neoadjuvant chemoradiotherapy response. This provides opportunity to modify individualized treatment strategies for patients with different CK7 expression levels and dMMR statuses.


Asunto(s)
Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Queratina-7 , Reparación de la Incompatibilidad de ADN , Estudios Retrospectivos , Neoplasias del Recto/genética , Neoplasias del Recto/terapia , Pronóstico , Estadificación de Neoplasias
16.
J Cachexia Sarcopenia Muscle ; 14(6): 2719-2732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37899701

RESUMEN

BACKGROUND: Diabetic cardiomyopathy, a distinctive complication of diabetes mellitus, has been correlated with the presence of intracellular lipid deposits. However, the intricate molecular mechanisms governing the aberrant accumulation of lipid droplets within cardiomyocytes remain to be comprehensively elucidated. METHODS: Both obese diabetic (db/db) mice and HL-1 cells treated with 200 µmol/L palmitate and 200 µmol/L oleate were used to simulate type 2 diabetes conditions. Transmission electron microscopy is employed to assess the size and quantity of lipid droplets in the mouse hearts. Transcriptomics analysis was utilized to interrogate mRNA levels. Lipidomics and ubiquitinomics were employed to explore the lipid composition alterations and proteins participating in ubiquitin-mediated degradation in mice. Clinical data were collected from patients with diabetes-associated cardiomyopathy and healthy controls. Western blot analysis was conducted to assess the levels of proteins linked to lipid metabolism, and the biotin-switch assay was employed to quantify protein cysteine S-sulfhydration levels. RESULTS: The administration of H2 S donor, NaHS, effectively restored hydrogen sulfide levels in both the cardiac tissue and plasma of db/db mice (+7%, P < 0.001; +5%, P < 0.001). Both db/db mice (+210%, P < 0.001) and diabetic patients (+83%, P = 0.22, n = 5) exhibit elevated plasma triglyceride levels. Treatment with GYY4137 effectively lowers triglyceride levels in db/db mice (-43%, P = 0.007). The expression of cystathionine gamma-lyase and HMG-CoA reductase degradation protein 1 (SYVN1) was decreased in db/db mice compared with the wild-type mice (cystathionine gamma-lyase: -31%, P = 0.0240; SYVN1: -35%, P = 0.01), and NaHS-treated mice (SYVN1: -31%, P = 0.03). Conversely, the expression of sterol regulatory element-binding protein 1 (SREBP1) was elevated (+91%, P = 0.007; +51%, P = 0.03 compared with control and NaHS-treated mice, respectively), along with diacylglycerol O-acyltransferase 1 (DGAT1) (+95%, P = 0.001; +35%, P = 0.02) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) (+88%, P = 0.01; +22%, P = 0.32). Exogenous H2 S led to a reduction in lipid droplet formation (-48%, P < 0.001), restoration of SYVN1 expression, modification of SYVN1's S-sulfhydration status and enhancement of SREBP1 ubiquitination. Overexpression of SYVN1 mutated at Cys115 decreased SREBP1 ubiquitination and increased the number of lipid droplets. CONCLUSIONS: Exogenous H2 S enhances ubiquitin-proteasome degradation of SREBP1 and reduces its nuclear translocation by modulating SYVN1's cysteine S-sulfhydration. This pathway limits lipid droplet buildup in cardiac myocytes, ameliorating diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Humanos , Ratones , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Lípidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Triglicéridos/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligasas
17.
J Transl Med ; 21(1): 719, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833712

RESUMEN

BACKGROUND: Polyploid giant cancer cells (PGCCs), a specific type of cancer stem cells (CSCs), can be induced by hypoxic microenvironments, chemical reagents, radiotherapy, and Chinese herbal medicine. Moreover, PGCCs can produce daughter cells that undergo epithelial-mesenchymal transition, which leads to cancer recurrence and disseminated metastasis. Vimentin, a mesenchymal cell marker, is highly expressed in PGCCs and their daughter cells (PDCs) and drives migratory persistence. This study explored the molecular mechanisms by which vimentin synergistically regulates PGCCs to generate daughter cells with enhanced invasive and metastatic properties. METHODS: Arsenic trioxide (ATO) was used to induce the formation of PGCCs in Hct116 and LoVo cells. Immunocytochemical and immunohistochemical assays were performed to determine the subcellular localization of vimentin. Cell function assays were performed to compare the invasive metastatic abilities of the PDCs and control cells. The molecular mechanisms underlying vimentin expression and nuclear translocation were investigated by real-time polymerase chain reaction, western blotting, cell function assays, cell transfection, co-immunoprecipitation, and chromatin immunoprecipitation, followed by sequencing. Finally, animal xenograft experiments and clinical colorectal cancer samples were used to study vimentin expression in tumor tissues. RESULTS: Daughter cells derived from PGCCs showed strong proliferative, migratory, and invasive abilities, in which vimentin was highly expressed and located in both the cytoplasm and nucleus. Vimentin undergoes small ubiquitin-like modification (SUMOylation) by interacting with SUMO1 and SUMO2/3, which are associated with nuclear translocation. P62 regulates nuclear translocation of vimentin by controlling SUMO1 and SUMO2/3 expression. In the nucleus, vimentin acts as a transcription factor that regulates CDC42, cathepsin B, and cathepsin D to promote PDC invasion and migration. Furthermore, animal experiments and human colorectal cancer specimens have confirmed the nuclear translocation of vimentin. CONCLUSION: P62-dependent SUMOylation of vimentin plays an important role in PDC migration and invasion. Vimentin nuclear translocation and overexpressed P62 of cancer cells may be used to predict patient prognosis, and targeting vimentin nuclear translocation may be a promising therapeutic strategy for metastatic cancers.


Asunto(s)
Neoplasias Colorrectales , Células Gigantes , Animales , Humanos , Vimentina/metabolismo , Línea Celular Tumoral , Células Gigantes/metabolismo , Células Gigantes/patología , Transición Epitelial-Mesenquimal , Neoplasias Colorrectales/patología , Poliploidía , Movimiento Celular , Microambiente Tumoral
18.
Front Immunol ; 14: 1263537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767092

RESUMEN

Introduction: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of distant metastasis, an extremely poor prognosis, and a high risk of death. Regulatory T cells (Tregs) contribute to the formation of a tumor immunosuppressive microenvironment, which plays an important role in the progression and treatment resistance of TNBC. Methods: A public single-cell sequencing dataset demonstrated increased infiltration of Tregs in TNBC tissues relative to normal breast tissue. Weighted gene co-expression network analysis was used to identify Treg infiltration-related modules for METABRIC TNBC samples. Subsequently, we obtained two Treg infiltration-associated clusters of TNBC by applying consensus clustering and further constructed a prognostic model based on this Treg infiltration-associated gene module. The ability of the selected gene in the prognostic model, thymidine kinase-1 (TK1), to promote the progression of TNBC was evaluated in vitro. Results: We concluded that two Treg infiltration-associated clusters had different prognoses and sensitivities to drugs commonly used in breast cancer treatment, and multi-omics analysis revealed that the two clusters had different copy number variations of key tumor progression genes. The 7-gene risk score based on TNBC Treg infiltration was a reliable prognostic indicator both in the training and validation cohorts. Moreover, patients with TNBC with high Treg infiltration-related scores lacked the activation of immune activation pathways and exhibited resistance to anti-PD1 immunotherapy. Knocking down TK1 led to impaired proliferation, migration, and invasion of TNBC cells in vitro. In addition, specimens from patients with TNBC with high TK1 expression showed significantly higher Treg infiltration in tumors. Results of spatial transcriptome analysis showed that TK1 positive cells mainly localize in tumor area, and Treg cell infiltration in TNBC tissues was associated with high expression of TK1. Pan-cancer analysis also demonstrated that TK1 is associated with poor prognosis and activation of proliferation pathways in multiple cancers. Discussion: We established a prognostic model related to Treg infiltration and this model can be used to establish a clinically relevant classification of TNBC progression. Additionally, our work revealed the underestimable potential of TK1 as a tumor biomarker and immunotherapeutic target.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Linfocitos T Reguladores , Variaciones en el Número de Copia de ADN , Inmunoterapia , Mama , Microambiente Tumoral
19.
Food Sci Nutr ; 11(9): 4926-4947, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701204

RESUMEN

Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.

20.
Am J Transl Res ; 15(7): 4687-4698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560203

RESUMEN

PURPOSE: Vasculogenic mimicry (VM) is present in a variety of malignant tumors, and is related to the degree of malignancy. Neuroblastoma (NB) can induce the expression of fetal hemoglobin (HB-F). The purpose of this study was to investigate the clinicopathological significance of the number of VMs and tumor cell expression of HB-F in children with peripheral neuroblastic tumors (pNTs). MATERIALS AND METHODS: We collected tissue samples and clinical data from 101 children with pNTs; prepared serial sections of tissue wax blocks for hematoxylin and eosin staining, CD31/periodic acid-Schiff double staining, and HB-F immunohistochemical staining; and analyzed the experimental results. RESULTS: There were significant differences in the number of VMs and HB-F expression in tumor cells according to the pathological classification of pNTs (P<0.001, collectively). Poorly differentiated NB had a median of 137 VMs and 25.5% HB-F expression. Differentiating NB had a median of 90.5 VMs and 8.5% HB-F expression. Ganglioneuroblastoma intermixed had a median of 6.0 VMs and 1.0% HB-F expression. Ganglioneuromas had no VM and a median of 0% HB-F expression. The number of VMs and the expression of HB-F were significantly higher in the poor prognosis group than the good prognosis group (P<0.001, collectively). There was a strong positive correlation between the number of VMs and HB-F expression in pNTs (r=0.891, P<0.001). CONCLUSION: We confirmed VM and HB-F expression in pNTs. The number of VMs and HB-F expression were higher in poorly differentiated tumors. The number of VMs and level of HB-F expression in pNTs might be related to the prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA