Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Cancer ; 24(1): 564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711026

RESUMEN

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Asunto(s)
Resistencia a Antineoplásicos , Fluorouracilo , Neoplasias de la Boca , Vía de Señalización Wnt , Proteína Wnt3 , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Vía de Señalización Wnt/efectos de los fármacos , Línea Celular Tumoral , Proteína Wnt3/metabolismo , Proteína Wnt3/genética , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Quant Imaging Med Surg ; 14(2): 1477-1492, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415169

RESUMEN

Background: It has been suggested that biomechanical factors may influence plaque development. However, key determinants for assessing plaque vulnerability remain speculative. Methods: In this study, a two-dimensional (2D) structural mechanical analysis and a three-dimensional (3D) fluid-structure interaction (FSI) analysis were conducted based on intravascular optical coherence tomography (IV-OCT) and digital subtraction angiography (DSA) data sets. In the 2D study, 103 IV-OCT slices were analyzed. An in-depth morpho-mechanic analysis and a weighted least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify the crucial features related to plaque vulnerability via the tuning parameter (λ). In the 3D study, the coronary model was reconstructed by fusing the IV-OCT and DSA data, and a FSI analysis was subsequently performed. The relationship between vulnerable plaque and wall shear stress (WSS) was investigated. Results: The influential factors were selected using the minimum criteria (λ-min) and one-standard error criteria (λ-1se). In addition to the common vulnerable factor of the minimum fibrous cap thickness (FCTmin), four biomechanical factors were selected by λ-min, including the average/maximal displacements and average/maximal stress, and two biomechanical factors were selected by λ-1se, including the average/maximal displacements. Additionally, the positions of the vulnerable plaques were consistent with the sites of high WSS. Conclusions: Functional indices are crucial for plaque status assessment. An evaluation based on biomechanical simulations might provide insights into risk identification and guide therapeutic decisions.

3.
Redox Biol ; 71: 103086, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367510

RESUMEN

Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular Hemorrágico , Células-Madre Neurales , Animales , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Accidente Cerebrovascular Hemorrágico/metabolismo , Hipocampo/metabolismo , Hierro/metabolismo , Células-Madre Neurales/metabolismo , Calidad de Vida , Especies Reactivas de Oxígeno/metabolismo , Ratones
4.
Aging (Albany NY) ; 16(2): 1077-1095, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38224491

RESUMEN

BACKGROUND: Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS: We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS: Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS: Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD8-positivos , Humanos , Femenino , Pronóstico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biología Computacional , Microambiente Tumoral/genética , Proteína BRCA1/genética
5.
Biomed Pharmacother ; 167: 115491, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722187

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the standard first-line therapy for EGFR-mutated NSCLC. However, long-term clinical treatment often leads to acquired drug resistance, making NSCLC refractory. Therefore, it is essential to design new EGFR inhibitors as potential drugs against NSCLC. This study reports on a novel quinazoline-based compound called YS-363 that acts as a new EGFR inhibitor. YS-363 demonstrated potent inhibition against both wild-type and L858R mutant forms of EGFR with IC50 values of 0.96 nM and 0.67 nM, respectively. Additionally, YS-363 had a reversible inhibitory effect on cellular EGFR signaling, had excellent inhibitory activity on cell proliferation and migration, and induced G0/G1 cell cycle arrest and apoptosis. In xenograft models dependent on EGFR signaling, oral administration of YS-363 substantially suppressed tumor growth by inhibiting this pathway. In summary, YS-363 is a promising selective reversible inhibitor with a novel quinazoline scaffold that can potentially develop more effective anti-lung cancer agents targeting EGFR in patients who have developed resistance to current therapies such as TKIs like gefitinib or erlotinib.

6.
ACS Nano ; 17(14): 13917-13937, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37429012

RESUMEN

Inflammatory infiltration and bone destruction are important pathological features of rheumatoid arthritis (RA), which originate from the disturbed niche of macrophages. Here, we identified a niche-disrupting process in RA: due to overactivation of complement, the barrier function of VSIg4+ lining macrophages is disrupted and mediates inflammatory infiltration within the joint, thereby activating excessive osteoclastogenesis and bone resorption. However, complement antagonists have poor biological applications due to superphysiologic dose requirements and inadequate effects on bone resorption. Therefore, we developed a dual-targeted therapeutic nanoplatform based on the MOF framework to achieve bone-targeted delivery of the complement inhibitor CRIg-CD59 and pH-responsive sustained release. The surface-mineralized zoledronic acid (ZA) of ZIF8@CRIg-CD59@HA@ZA targets the skeletal acidic microenvironment in RA, and the sustained release of CRIg-CD59 can recognize and prevent the complement membrane attack complex (MAC) from forming on the surface of healthy cells. Importantly, ZA can inhibit osteoclast-mediated bone resorption, and CRIg-CD59 can promote the repair of the VSIg4+ lining macrophage barrier to achieve sequential niche remodeling. This combination therapy is expected to treat RA by reversing the core pathological process, circumventing the pitfalls of traditional therapy.


Asunto(s)
Artritis Reumatoide , Resorción Ósea , Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/farmacología , Preparaciones de Acción Retardada/farmacología , Macrófagos/patología , Osteoclastos/patología , Ácido Zoledrónico/farmacología
7.
Bioeng Transl Med ; 8(2): e10451, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925711

RESUMEN

Intracerebral hemorrhage (ICH) poses a great threat to human health because of its high mortality and morbidity. Neural stem cell (NSC) transplantation is promising for treating white matter injury following ICH to promote functional recovery. However, reactive oxygen species (ROS)-induced NSC apoptosis and uncontrolled differentiation hindered the effectiveness of the therapy. Herein, we developed a single-cell nanogel system by layer-by-layer (LbL) hydrogen bonding of gelatin and tannic acid (TA), which was modified with a boronic ester-based compound linking triiodothyronine (T3). In vitro, NSCs in nanogel were protected from ROS-induced apoptosis, with apoptotic signaling pathways downregulated. This process of ROS elimination by material shell synergistically triggered T3 release to induce NSC differentiation into oligodendrocytes. Furthermore, in animal studies, ICH mice receiving nanogels performed better in behavioral evaluation, neurological scaling, and open field tests. These animals exhibited enhanced differentiation of NSCs into oligodendrocytes and promoted white matter tract regeneration on Day 21 through activation of the αvß3/PI3K/THRA pathway. Consequently, transplantation of LbL(T3) nanogels largely resolved two obstacles in NSC therapy synergistically: low survival and uncontrolled differentiation, enhancing white matter regeneration and behavioral performance of ICH mice. As expected, nanoencapsulation with synergistic effects would efficiently provide hosts with various biological benefits and minimize the difficulty in material fabrication, inspiring next-generation material design for tackling complicated pathological conditions.

8.
Mol Biol Rep ; 50(1): 507-516, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36352181

RESUMEN

AIM: Lysine-Specific Demethylase 1 (LSD1) inhibitors have been developed and reached the clinic, but its effect in combination with cytotoxic chemotherapy is unclear. Here, we investigated the anti-tumor effect of LSD1 inhibitor GSK-LSD1 and its anti-tumor effect with the DNA damage drug doxorubicin (DOX) in gastric cancer (GC) cells. METHODS: Cells were treated with different concentrations of GSK-LSD1 to examine the anti-tumor effect versus cell viability by MTT and cell cycle arrest by flow cytometry. To explore whether LSD1 inhibitors can increase the anti-tumor effect of DNA damage drugs, cells were treated with DOX for 48 h after pretreatment with GSK-LSD1 for 48 h. Cell viability was detected by MTT and apoptosis-related proteins were examined by Western blot. Furthermore, anti-tumor efficacy of combination GSK-LSD1 with DOX was also measured in MGC-803 xenografts model in nude mice. RESULTS: The results showed that LSD1 was highly expressed in GC cell lines. Inhibition of LSD1 has a weak effect on cell viability and cell cycle. Moreover, LSD1 inhibitors pretreatment could significantly increase the anti-tumor effect of DOX. Further study found that inhibition of LSD1 can significantly enhance DOX-induced the apoptosis, accompanied by down-regulation of antiapoptotic Bcl-2 expression and up-regulation of proapoptotic Bax expression. We also confirmed that inhibition of LSD1 can sensitize the anti-tumor effect of DOX in vivo. CONCLUSION: Our findings suggest that the LSD1 inhibitor GSK-LSD1 has a weak inhibitory effect on the viability and cell cycle of GC cells, but can enhance the sensitivity of DOX.


Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Lisina/farmacología , Ratones Desnudos , Doxorrubicina/farmacología , Apoptosis , Histona Demetilasas/metabolismo , Histona Demetilasas/farmacología , Línea Celular Tumoral , Proliferación Celular
9.
Global Spine J ; 13(7): 1829-1839, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34736351

RESUMEN

STUDY DESIGN: Retrospective clinical case series. OBJECTIVES: To investigate the risk factors for intraoperative endplate violations and delayed cage subsidence after oblique lateral interbody fusion (OLIF) surgery. Secondly, to examine whether low Hounsfield unit (HU) values at different regions of the endplate are associated with intraoperative endplate violation or delayed cage subsidence. METHODS: 61 patients (aged 65.1 ± 9.5 years; 107 segments) who underwent OLIF with or without posterior instrumentation from May 2015 to April 2019 were retrospectively studied. Intraoperative endplate violation was measured on sagittal reconstructed computerized tomography (CT) images immediate postoperatively, while delayed cage subsidence was evaluated using lateral radiographs and defined at 1-month follow-up or later. Demographic information and clinical parameters such as age, body mass index, bone mineral density, number of surgical levels, cage dimension, disc height restoration, visual analogue scale (VAS), and HU at different regions of the endplate were obtained. RESULTS: Total postoperative cage subsidence was identified in 45 surgical levels (42.0%) in 26 patients (42.6%) up till postoperative 1-year follow-up. Low HU value at the ipsilateral epiphyseal ring was an independent risk factor for intraoperative endplate violation (P = .008) with a cut-off value of 326.21 HUs. Low HU values at the central endplate had a significant correlation with delayed cage subsidence in stand-alone cases (P = .013) with a cut-off value of 296.42 HUs. VAS scores were not different at 1 week postoperatively in cases with or without intraoperative endplate violation (3.12 ± .73 vs 2.89 ± .72, P = .166) and showed no difference at 1 year with or without delayed cage subsidence (1.95 ± .60 vs 2.26 ± .85, P = .173). CONCLUSIONS: Intraoperative endplate violation and delayed cage subsidence are not uncommon with OLIF surgery. HUs of the endplate are good predictors for intraoperative endplate violation and cage subsidence since they can represent the regional bone quality of the endplate in contact with the implant. VAS improvements were not affected by intraoperative endplate violation or delayed cage subsidence at 1-year follow-up. LEVEL OF EVIDENCE: Level III.

10.
J Integr Neurosci ; 22(6): 171, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176920

RESUMEN

BACKGROUND: White matter injury (WMI) in basal ganglia usually induces long-term disability post intracerebral hemorrhage (ICH). Kv1.3 is an ion channel expressed in microglia and induces neuroinflammation after ICH. Here, we investigated the functions and roles of Kv1.3 activation-induced inflammatory response in WMI and the Kv1.3 blockade effect on microglia polarization after ICH. METHODS: Mice ICH model was constructed by autologous blood injection. The expression of Kv1.3 was measured using immunoblot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays. Then, the effect of administration of 5-(4-Phenoxybutoxy) psoralen (PAP-1), a selectively pharmacological Kv1.3 blocker, was investigated using open field test (OFT) and basso mouse score (BMS). RT-qPCR, immunoblot, and enzyme-linked immunosorbent assay (ELISA) were taken to elucidate the expression of pro-inflammatory or anti-inflammatory factors around hematoma. PAP-1's function in regulating microglia polarization was investigated using immunoblot, RT-qPCR, and immunostaining assays. The downstream PAP-1 signaling pathway was determined by RT-qPCR and immunoblot. RESULTS: Kv1.3 expression was increased in microglia around the hematoma significantly after ICH. PAP-1 markedly improved neurological outcomes and the WMI by reducing pro-inflammatory cytokine accumulation and upregulating anti-inflammatory factors. Mechanistically, PAP-1 reduces NF-κB p65 and p50 activation, thus facilitating microglia polarization into M2-like microglia, which exerts this beneficial effect. CONCLUSIONS: PAP-1 reduced pro-inflammatory cytokines accumulation and increased anti-inflammatory factors by facilitating M2-like microglia polarization via the NF-κB signaling pathway. Thus, the current study shows that the Kv1.3 blockade is capable of ameliorating WMI by facilitating M2-like phenotype microglia polarization after ICH.


Asunto(s)
Lesiones Encefálicas , Canal de Potasio Kv1.3 , Sustancia Blanca , Animales , Ratones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Hematoma , FN-kappa B/metabolismo , Fenotipo , Transducción de Señal/fisiología , Canal de Potasio Kv1.3/antagonistas & inhibidores
11.
J Interv Med ; 6(4): 194-198, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38312125

RESUMEN

Undifferentiated pleomorphic sarcoma is an extremely rare malignant thyroid tumor. Thyroid sarcoma differs from common malignant thyroid tumors, such as thyroid follicular cell carcinoma. It is usually highly malignant, progresses rapidly, and is prone to remote metastasis. Currently, there is no standard protocol for the treatment of thyroid sarcomas, and most treatment effects are unsatisfactory. Argon-helium cryoablation is an important method of local treatment that is widely used in patients with unresectable advanced tumors. However, owing to the low incidence of thyroid sarcomas, there are no relevant literature reports on the treatment of thyroid sarcomas using cryoablation in China. This study reports the case of a patient with undifferentiated pleomorphic sarcoma of the thyroid gland who was treated with argon-helium cryoablation, and the immediate outcome was good. Based on a review of relevant literature, we discussed the effectiveness and safety of argon-helium cryoablation treatment to provide clinical guidance and references for the treatment of patients with thyroid sarcoma.

12.
Front Plant Sci ; 13: 932720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092416

RESUMEN

Nitrogen (N) is an important contributor in regulating plant growth and development as well as secondary metabolites synthesis, so as to promote the formation of tea quality and flavor. Theanine, polyphenols, and caffeine are important secondary metabolites in tea plant. In this study, the responses of Camellia sinensis roots to N deprivation and resupply were investigated by metabolome and RNA-seq analysis. N deficiency induced content increase for most amino acids (AAs) and reduction for the remaining AAs, polyphenols, and caffeine. After N recovery, the decreased AAs and polyphenols showed a varying degree of recovery in content, but caffeine did not. Meanwhile, theanine increased in content, but its related synthetic genes were down-regulated, probably due to coordination of the whole N starvation regulatory network. Flavonoids-related pathways were relatively active following N stress according to KEGG enrichment analysis. Gene co-expression analysis revealed TCS2, AMT1;1, TAT2, TS, and GOGAT as key genes, and TFs like MYB, bHLH, and NAC were also actively involved in N stress responses in C. sinensis roots. These findings facilitate the understanding of the molecular mechanism of N regulation in tea roots and provide genetic reference for improving N use efficiency in tea plant.

13.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1068-1079, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35929596

RESUMEN

Osteoporosis deteriorates bone mass and biomechanical strength and is life-threatening to the elderly. In this study, we show that methyl 3,4-dihydroxybenzoate (MDHB), an antioxidant small-molecule compound extracted from natural plants, inhibits receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in vitro. Furthermore, MDHB attenuates the activation of mitogen-activated protein kinase (MAPK) and NF-κB pathways by reducing the levels of reactive oxygen species (ROS), which leads to downregulated protein expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1). We also confirm that MDHB upregulates the protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), an important transcription factor involved in ROS regulation, by inhibiting the ubiquitination-mediated proteasomal degradation of Nrf2. Next, animal experiments show that MDHB has an effective therapeutic effect on lipopolysaccharide (LPS)- and ovariectomized (OVX)-induced bone loss in mice. Our study demonstrates that MDHB can upregulate Nrf2 and suppress excessive osteoclast activity in mice to treat osteoporosis.


Asunto(s)
Osteólisis , Osteoporosis , Animales , Antioxidantes/farmacología , Femenino , Humanos , Hidroxibenzoatos , Ligandos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteólisis/tratamiento farmacológico , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/prevención & control , Ovariectomía , Especies Reactivas de Oxígeno/metabolismo , Receptor Activador del Factor Nuclear kappa-B/farmacología
14.
Neural Regen Res ; 17(11): 2512-2517, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35535904

RESUMEN

Brain lesions can cause neural stem cells to activate, proliferate, differentiate, and migrate to the injured area. However, after traumatic brain injury, brain tissue defects and microenvironment changes greatly affect the survival and growth of neural stem cells; the resulting reduction in the number of neural stem cells impedes effective repair of the injured area. Melatonin can promote the survival, proliferation, and differentiation of neural stem cells under adverse conditions such as oxidative stress or hypoxia that can occur after traumatic brain injury. Therefore, we investigated the therapeutic effects of melatonin combined with neural stem cells on traumatic brain injury in rats. First, in vitro studies confirmed that melatonin promoted the survival of neural stem cells deprived of oxygen and glucose. Then, we established a three-dimensional Matrigel-based transplantation system containing melatonin and neural stem cells and then used it to treat traumatic brain injury in rats. We found that treatment with the Matrigel system containing melatonin and neural stem cells decreased brain lesion volume, increased the number of surviving neurons, and improved recovery of neurological function compared with treatment with Matrigel alone, neural stem cells alone, Matrigel and neural stem cells combined, and Matrigel and melatonin combined. Our findings suggest that the three-dimensional Matrigel-based transplantation system containing melatonin and neural stem cells is a potential treatment for traumatic brain injury.

15.
Cell Death Dis ; 13(4): 413, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484132

RESUMEN

The transcriptional regulator nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3) is constitutively activated in several cancer types and plays important roles in cancer development and progression. Heavily phosphorylated NFATc3 resides in the cytoplasm of resting cells, and dephosphorylated NFATc3 translocates to the nucleus to activate expression of target genes in cells exposed to stimuli, for instance, hypoxia. Apart from phosphorylation, various post-translational modifications have been reported to regulate NFAT transcriptional activity. However, the mechanisms remain elusive. Here, we have demonstrated that NFATc3 is activated in human pancreatic ductal adenocarcinoma (PDAC) cells and that excessive activation of NFATc3 is correlated to advanced stages of PDAC and short survival time of PDAC patients. NFATc3 is deSUMOylated at K384 by SENP3 under hypoxia, which impairs the interaction between NFATc3 and phosphokinase GSK-3ß, subsequently decreases NFATc3 phosphorylation and increases its nuclear occupancy. Knockdown of SENP3 greatly decreased hypoxia-induced NFATc3 nuclear occupancy. Our results highlight that SENP3-mediated deSUMOylation acts as an essential modulator of NFATc3, which is instrumental in PDAC tumor progression under hypoxia.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Cisteína Endopeptidasas/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Hipoxia , Factores de Transcripción NFATC/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
16.
Oxid Med Cell Longev ; 2022: 9021474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265266

RESUMEN

Neural stem cell (NSC) proliferation is the initial step for NSC participating in neurorehabilitation after central nervous system (CNS) injury. During this process, oxidative stress is always involved in restricting the regenerative ability of NSC. Tetrahydrofolate (THF) is susceptible to oxidative stress and exhibits a high antioxidant activity. While its effect on NSC proliferation under oxidative stress condition remains obscure. Here, NSC were isolated from embryonic mice and identified using immunofluorescent staining. Meanwhile, the results showed that THF (5 µM and 10 µM) attenuated oxidative stress induced by 50 µM hydrogen peroxide (H2O2) in NSC using mitochondrial hydroxyl radical detection and Western blotting assays. Afterward, administration of THF markedly alleviated the inhibitory effect of oxidative stress on NSC proliferation, which was evidenced by Cell Counting Kit-8 (CCK8), neurosphere formation, and immunofluorescence of Ki67 assays. Thereafter, the results revealed that PTEN/Akt/mTOR signaling pathway played a pivotal role in counteracting oxidative stress to rescue the inhibitory effect of oxidative stress on NSC proliferation using Western blotting assays and gene knockdown techniques. Collectively, these results demonstrate that THF mitigates the inhibitory effect of oxidative stress on NSC proliferation via PTEN/Akt/mTOR signaling pathway, which provides evidence for administrating THF to potentiate the neuro-reparative capacity of NSC in the treatment of CNS diseases with the presence of oxidative stress.


Asunto(s)
Células-Madre Neurales/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tetrahidrofolatos/uso terapéutico , Complejo Vitamínico B/uso terapéutico , Animales , Proliferación Celular , Humanos , Ratones , Estrés Oxidativo , Tetrahidrofolatos/farmacología , Complejo Vitamínico B/farmacología
17.
Eur J Pharmacol ; 920: 174822, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151642

RESUMEN

The vitamin A metabolite all-trans retinoic acid (ATRA) plays a key role in immune response, but effects of ATRA on cancer-associated immunity remains unclear. Previously, we have shown that ATRA regulates the expression of PD-L1 in gastric cancer (GC) cells. We herein reported the mechanism underlying ATRA-induced PD-L1 expression in GC cells and the effects of ATRA on cancer-associated immunosuppression in vitro and in vivo. ATRA enhanced PD-L1 expression through increasing its protein stability and protein synthesis, which was suppressed by JAK pan-inhibitor ruxolitinib (RUX) but enhanced in the combination with IFN-γ. In T-cell-mediated killing assay, the upregulation of PD-L1-induced by ATRA rendered GC cells strongly resistant to activated T-cell killing, which was reversed by RUX. In vivo, PD-L1 antibody restricted tumor growth, but ATRA antagonized PD-L1 antibody efficacy. Importantly, RUX not only inhibited the expression of PD-L1 induced by ATRA, but also resensitized GC cells to PD-L1 antibody. In conclusion, our study illustrated that ATRA attenuated the effect of PD-L1 blockade through upregulating PD-L1 and blocking PD-L1 expression is an important role for the generation of effective anti-tumor immune response in the combination of immunotherapy and chemotherapy or targeted therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Gástricas , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Inmunoterapia , Neoplasias Gástricas/metabolismo , Linfocitos T , Tretinoina/farmacología , Tretinoina/uso terapéutico
18.
Clin Transl Med ; 12(1): e652, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35060345

RESUMEN

BACKGROUND: As an inflammatory factor and oncogenic driver protein, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) plays a crucial role in the osteosarcoma microenvironment. Although 4-iodo-6-phenylpyrimidine (4-IPP) can inactivate MIF biological functions, its anti-osteosarcoma effect and molecular mechanisms have not been investigated. In this study, we identified the MIF inhibitor 4-IPP as a specific double-effector drug for osteosarcoma with both anti-tumour and anti-osteoclastogenic functions. METHODS: The anti-cancer effects of 4-IPP were evaluated by wound healing assay, cell cycle analysis, colony formation assay, CCK-8 assay, apoptosis analysis, and Transwell migration/invasion assays. Through the application of a luciferase reporter, chromatin immunoprecipitation assays, and immunofluorescence and coimmunoprecipitation analyses, the transcriptional regulation of the NF-κB/P-TEFb complex on c-Myb- and STUB1-mediated proteasome-dependent MIF protein degradation was confirmed. The effect of 4-IPP on tumour growth and metastasis was assessed using an HOS-derived tail vein metastasis model and subcutaneous and orthotopic xenograft tumour models. RESULTS: In vitro, 4-IPP significantly reduced the proliferation and metastasis of osteosarcoma cells by suppressing the NF-κB pathway. 4-IPP hindered the binding between MIF and CD74 as well as p65. Moreover, 4-IPP inhibited MIF to interrupt the formation of downstream NF-κB/P-TEFb complexes, leading to the down-regulation of c-Myb transcription. Interestingly, the implementation of 4-IPP can mediate small molecule-induced MIF protein proteasomal degradation via the STUB1 E3 ligand. However, 4-IPP still interrupted MIF-mediated communication between osteosarcoma cells and osteoclasts, thus promoting osteoclastogenesis. Remarkably, 4-IPP strongly reduced HOS-derived xenograft osteosarcoma tumourigenesis and metastasis in an in vivo mouse model. CONCLUSIONS: Our findings demonstrate that the small molecule 4-IPP targeting the MIF protein exerts an anti-osteosarcoma effect by simultaneously inactivating the biological functions of MIF and promoting its proteasomal degradation. Direct destabilization of the MIF protein with 4-IPP may be a promising therapeutic strategy for treating osteosarcoma.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , FN-kappa B/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Factor B de Elongación Transcripcional Positiva/efectos de los fármacos , Pirimidinas/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos
19.
Sci Rep ; 12(1): 64, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996896

RESUMEN

Hypoalbuminemia is associated with poor outcome in patients undergoing surgery intervention. The main aim for this study was to investigate the incidence and the risk factors of postoperative hypoalbuminemia and assessed the impact of postoperative hypoalbuminemia on complications in patients undergoing brain tumor surgery. This retrospective study included 372 consecutive patients who underwent brain tumors surgery from January 2017 to December 2019. The patients were divided into hypoalbuminemia (< 35 g/L) and non-hypoalbuminemia group (≥ 35 g/L) based on postoperative albumin levels. Logistic regression analyses were used to determine risk factors. Of the total 372 patients, 333 (89.5%) developed hypoalbuminemia after surgery. Hypoalbuminemia was associated with operation time (OR 1.011, P < 0.001), preoperative albumin (OR 0.864, P = 0.015) and peroperative globulin (OR 1.192, P = 0.004). Postoperative pulmonary imaging abnormalities had a higher incidence in patients with than without hypoalbuminemia (41.1% vs 23.1%, P = 0.029). The independent predictors of postoperative pulmonary imaging abnormalities were age (OR 1.053, P < 0.001), operation time (OR 1.003, P = 0.013) and lower postoperative albumin (OR 0.946, P = 0.018). Pulmonary imaging abnormalities [OR 19.862 (95% CI 2.546-154.936, P = 0.004)] was a novel independent predictors of postoperative pneumonia. Postoperative hypoalbuminemia has a higher incidence with the increase of operation time, and may be associated with postoperative complications in patients undergoing brain tumor surgery.


Asunto(s)
Neoplasias Encefálicas/cirugía , Craneotomía/efectos adversos , Hipoalbuminemia/epidemiología , Enfermedades Pulmonares/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Humanos , Hipoalbuminemia/sangre , Hipoalbuminemia/diagnóstico , Incidencia , Enfermedades Pulmonares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Tempo Operativo , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Albúmina Sérica Humana/análisis , Factores de Tiempo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Adulto Joven
20.
Chin J Physiol ; 65(6): 311-318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588357

RESUMEN

LncRNAs are associated with tumorigenesis of liver cancer. LncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) was identified as an oncogenic lncRNA and involved in tumor growth and metastasis. The role of CRNDE in liver cancer was investigated. CRNDE was elevated in liver cancer cells. Knockdown of CRNDE decreased cell viability and inhibited proliferation of liver cancer. Moreover, knockdown of CRNDE reduced levels of extracellular acidification rate, glucose consumption, and lactate production to repress glycolysis of liver cancer. Silence of CRNDE enhanced the expression of miR-142 and reduced enhancer of zeste homolog 2 (EZH2) and hypoxia-inducible factor 1α (HIF-1α). Over-expression of HIF-1α attenuated CRNDE silence-induced decrease of glucose consumption and lactate production. Injection with sh-CRNDE virus reduced in vivo tumor growth of liver cancer through up-regulation of miR-142 and down-regulation of EZH2 and HIF-1α. In conclusion, knockdown of CRNDE suppressed cell proliferation, glycolysis, and tumor growth of liver cancer through EZH2/miR-142/HIF-1α.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , MicroARNs/genética , MicroARNs/metabolismo , Lactatos , Glucólisis , Hipoxia/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA