Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Chem ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254112

RESUMEN

Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire same-cell measurements of both phenotypic (cell-contact state) and targeted-protein (ERK phosphorylation) profiles, we prepend high-content, whole-cell imaging prior to end-point cellular-resolution Western blot analyses for each of hundreds of individual HeLa cancer cells cultured on that same chip, which we call contactBlot. By indexing the phosphorylation level of ERK in each cell or cell cluster to the imaged cell-contact state, we compare the ERK signaling between isolated and in-contact cells. We observe attenuated (∼2×) ERK signaling in HeLa cells that are in-contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells while introducing a multi-omics tool for control and scrutiny of cell-cell interactions.

2.
Shock ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228020

RESUMEN

BACKGROUND: Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in pathological state such as sepsis. This pathological process is known as the 'two-hit' theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when mechanical ventilation is applied to lung tissue in a fragile state, and it is noteworthy that this mechanical ventilation is harmless to healthy lung tissue, further aggravating pre-existing lung injury through unknown mechanisms. This interaction between initial injury and subsequent mechanical ventilation develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. METHODS AND RESULTS: CLP mice model was used to mimic clinical sepsis patients. After 12 hours the mice were mechanical ventilated for 2-6 hours. MV by itself didn't lead to HMGB1 release, but significantly strengthened HMGB1 in plasma and cytoplasm of lung tissue in septic mice. Plasma and lung tissue activation of cytokines and chemokines, MAPK signaling pathway, neutrophil recruitment, and ALI were progressively decreased in LysM HMGB1-/- (Hmgb1 deletion in myeloid cells) and iHMGB1-/- mice (inducible HMGB1-/- mouse strain where the Hmgb1 gene was globally deleted after tamoxifen treatment). Compared with C57BL/6 mice, although EC-HMGB1-/- (Hmgb1 deletion in endothelial cells) mice didn't have lower levels of inflammation, neutrophil recruitment and lung injury were reduced. Compared with LysM HMGB1-/- mice, EC-HMGB1-/- mice had higher levels of inflammation but significantly lower neutrophil recruitment and lung injury. Overall, iHMGB1-/- mice had the lowest levels of all the above indicators. The level of inflammation, neutrophil recruitment and the degree of lung injury were decreased in RAGE-/- mice, and even the above indices were further decreased in TLR4/RAGE-/- mice. Levels of inflammation and neutrophil recruitment were decreased in Caspase-11-/- and Caspase-1/11-/- mice, but no statistical difference between these two gene knockout mice. CONCLUSIONS: These data show for the first time that the Caspase-1/Caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung protective mechanisms in the 'two hits' model, and location is the key to function. Specifically, LysM HMGB1-/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary protective mechanism that was associated with a downregulation of the inflammatory response. EC HMGB1-/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1-/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.

3.
Mucosal Immunol ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251184

RESUMEN

Postoperative cognitive dysfunction (POCD) is a prevalent neurological complication that can impair learning and memory for days, months, or even years after anesthesia/surgery. POCD is strongly associated with an altered composition of the gut microbiota (dysbiosis), but the accompanying metabolic changes and their role in gut-brain communication and POCD pathogenesis remain unclear. Here, the present study reports that anesthesia/surgery in aged mice induces elevated intestinal indoleamine 2,3-dioxygenase (IDO) expression and activity, which shifts intestinal tryptophan (TRP) metabolism toward more IDO-catalyzed kynurenine (KYN) and less gut bacteria-catabolized indoleacetic acid (IAA). Both anesthesia/surgery and intraperitoneal KYN administration induce increased KYN levels that correlate with impaired spatial learning and memory, whereas dietary IAA supplementation attenuates the anesthesia/surgery-induced cognitive impairment. Mechanistically, anesthesia/surgery increases interferon-γ (IFN-γ)-producing group 1 innate lymphoid cells (ILC1) in the small intestine lamina propria and elevates intestinal IDO expression and activity, as indicated by the higher ratio of KYN to TRP. The IDO inhibitor 1-MT and antibodies targeting IFN-γ or ILCs mitigate anesthesia/surgery-induced cognitive dysfunction, suggesting that intestinal ILC1 expansion and the ensuing IFN-γ-induced IDO upregulation may be the primary pathway mediating the shift to the KYN pathway in POCD. The ILC1-KYN pathway in the intestine could be a promising therapeutic target for POCD.

4.
IEEE Trans Med Imaging ; PP2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141465

RESUMEN

Accurate polyp segmentation plays a critical role from colonoscopy images in the diagnosis and treatment of colorectal cancer. While deep learning-based polyp segmentation models have made significant progress, they often suffer from performance degradation when applied to unseen target domain datasets collected from different imaging devices. To address this challenge, unsupervised domain adaptation (UDA) methods have gained attention by leveraging labeled source data and unlabeled target data to reduce the domain gap. However, existing UDA methods primarily focus on capturing class-wise representations, neglecting domain-wise representations. Additionally, uncertainty in pseudo labels could hinder the segmentation performance. To tackle these issues, we propose a novel Domain-interactive Contrastive Learning and Prototype-guided Self-training (DCL-PS) framework for cross-domain polyp segmentation. Specifically, domaininteractive contrastive learning (DCL) with a domain-mixed prototype updating strategy is proposed to discriminate class-wise feature representations across domains. Then, to enhance the feature extraction ability of the encoder, we present a contrastive learning-based cross-consistency training (CL-CCT) strategy, which is imposed on both the prototypes obtained by the outputs of the main decoder and perturbed auxiliary outputs. Furthermore, we propose a prototype-guided self-training (PS) strategy, which dynamically assigns a weight for each pixel during selftraining, filtering out unreliable pixels and improving the quality of pseudo-labels. Experimental results demonstrate the superiority of DCL-PS in improving polyp segmentation performance in the target domain. The code will be released at https://github.com/taozh2017/DCLPS.

5.
Sci Rep ; 14(1): 6268, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491150

RESUMEN

3D SHINKEI neurography is a new sequence for imaging the peripheral nerves. The study aims at assessing traumatic brachial plexus injury using this sequence. Fifty-eight patients with suspected trauma induced brachial plexus injury underwent MR neurography (MRN) imaging in 3D SHINKEI sequence at 3 T. Surgery and intraoperative somatosensory evoked potentials or clinical follow-up results were used as the reference standard. MRN, surgery and electromyography (EMG) findings were recorded at four levels of the brachial plexus-roots, trunks, cords and branches. Fifty-eight patients had pre- or postganglionic injury. The C5-C6 nerve postganglionic segment was the most common (average 42%) among the postganglionic injuries detected by 3D SHINKEI MRN. The diagnostic accuracy (83.75%) and the specificity (90.30%) of MRN higher than that of EMG (p < 0.001). There was no significant difference in the diagnostic sensitivity of MRN compared with EMG (p > 0.05). Eighteen patients with brachial plexus injury underwent surgical exploration after MRN examination and the correlation between MRN and surgery was 66.7%. Due to the high diagnostic accuracy and specificity, 3D SHINKEI MRN can comprehensively display the traumatic brachial plexus injury. This sequence has great potential in the accurate diagnosis of traumatic brachial plexus injury.


Asunto(s)
Neuropatías del Plexo Braquial , Plexo Braquial , Humanos , Neuropatías del Plexo Braquial/diagnóstico por imagen , Neuropatías del Plexo Braquial/cirugía , Imagen por Resonancia Magnética/métodos , Plexo Braquial/lesiones , Nervios Periféricos , Estudios Prospectivos
6.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986875

RESUMEN

Extracellular signal-regulated kinase (ERK) signaling is essential to regulated cell behaviors, including cell proliferation, differentiation, and apoptosis. The influence of cell-cell contacts on ERK signaling is central to epithelial cells, yet few studies have sought to understand the same in cancer cells, particularly with single-cell resolution. To acquire both phenotypic (cell-contact state) and proteomic profile (ERK phosphorylation) on the same HeLa cells, we prepend high-content, whole-cell imaging prior to endpoint cellular-resolution western blot analyses for hundreds of cancer cells cultured on chip. By indexing the phosphorylation level of ERK in each cell or cell-contact cluster to the imaged cell-contact state, we compare ERK signaling between isolated and in-contact cells. We observe attenuated (∼2×) ERK signaling in HeLa cells which are in contact versus isolated. Attenuation is sustained when the HeLa cells are challenged with hyperosmotic stress. The contact-dependent differential ERK-phosphorylation corresponds to the differential EGFR distribution on cell surfaces, suggesting the involvement of EGFRs in contact-inhibited ERK signaling. Our findings show the impact of cell-cell contacts on ERK activation with isolated and in-contact cells, hence providing a new tool into control and scrutiny of cell-cell interactions.

7.
IEEE J Biomed Health Inform ; 27(7): 3349-3359, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37126623

RESUMEN

Automated brain tumor segmentation is crucial for aiding brain disease diagnosis and evaluating disease progress. Currently, magnetic resonance imaging (MRI) is a routinely adopted approach in the field of brain tumor segmentation that can provide different modality images. It is critical to leverage multi-modal images to boost brain tumor segmentation performance. Existing works commonly concentrate on generating a shared representation by fusing multi-modal data, while few methods take into account modality-specific characteristics. Besides, how to efficiently fuse arbitrary numbers of modalities is still a difficult task. In this study, we present a flexible fusion network (termed F 2Net) for multi-modal brain tumor segmentation, which can flexibly fuse arbitrary numbers of multi-modal information to explore complementary information while maintaining the specific characteristics of each modality. Our F 2Net is based on the encoder-decoder structure, which utilizes two Transformer-based feature learning streams and a cross-modal shared learning network to extract individual and shared feature representations. To effectively integrate the knowledge from the multi-modality data, we propose a cross-modal feature-enhanced module (CFM) and a multi-modal collaboration module (MCM), which aims at fusing the multi-modal features into the shared learning network and incorporating the features from encoders into the shared decoder, respectively. Extensive experimental results on multiple benchmark datasets demonstrate the effectiveness of our F 2Net over other state-of-the-art segmentation methods.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Benchmarking , Suministros de Energía Eléctrica , Conocimiento , Procesamiento de Imagen Asistido por Computador
8.
Eur J Med Chem ; 254: 115367, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086699

RESUMEN

Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 µM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Ratas , Animales , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular Tumoral , Ratas Sprague-Dawley , Proliferación Celular , Apoptosis , Histona Demetilasas , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Relación Estructura-Actividad
9.
Front Microbiol ; 14: 1151365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36925482

RESUMEN

In this study, Podoscypha was taxonomically and phylogenetically evaluated. In total, five specimens collected from the tropical areas of Yunnan Province in Southwest China were studied. In combination with morphological observations and phylogenetic analyses based on ITS and LSU loci, two new species and one new subspecies, Podoscypha subinvoluta, P. tropica, and P. petalodes subsp. cystidiata, respectively, were discovered. The illustrated descriptions of the new species and subspecies are provided. Moreover, the main morphological differences between related species are discussed.

10.
Trials ; 24(1): 146, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841790

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) refers to a neurological dysfunction after a major surgery and anesthesia. It is common in elderly patients and is characterized by impairment in consciousness, orientation, thinking, memory, and executive function after surgical anesthesia. However, at present, there is no definite preventive or treatable strategy for it. Previous animal experiments showed that giving probiotics to mice before operation can prevent POCD, but there is a lack of clinical evidence. This study aims to intervene with the intestinal flora imbalance using probiotics during the perioperative period to reduce the incidence of POCD in elderly patients after orthopedic surgery and to provide new ideas and methods for the clinical prevention and treatment of POCD. METHODS: A multicenter, double-blind, placebo-controlled clinical trial will be performed to evaluate the efficacy of probiotics in elderly patients undergoing orthopedic surgery. Participants (n = 220) will receive probiotics (Peifeikang, Live Combined Bifidobacterium, 210 mg per capsule, twice a day, four capsules each time, which contains Bifidobacterium longum, Lactobacillus acidophilus and Streptococcus faecalis no less than 1.0 × 107 CFU viable bacteria respectively) or placebo from 1 day before surgery to 6 days after surgery. Neuropsychological tests will be performed 1 day before surgery and 1 week and 1 month after surgery. The main outcome of this study is the incidence of POCD 7 days after surgery. Our secondary objective is to assess the incidence of POCD 1 month after surgery; the cognitive status will be determined based on a telephone interview and will be evaluated via TICS-m; postoperative delirium will be assessed 7 days after surgery using the Confusion Assessment Method (CAM). DISCUSSION: Discovering the correlation between the intestinal microbiota and POCD is an important breakthrough. Based on the key role of the intestinal microbiota in other cognitive disorders, we hope that probiotics can reduce its incidence in elderly orthopedic patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT04017403. Registered on August 15, 2019.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Procedimientos Ortopédicos , Complicaciones Cognitivas Postoperatorias , Probióticos , Animales , Ratones , Complicaciones Cognitivas Postoperatorias/etiología , Disfunción Cognitiva/prevención & control , Procedimientos Ortopédicos/efectos adversos , Complicaciones Posoperatorias/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
11.
bioRxiv ; 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36711668

RESUMEN

Our understanding of the lymphatic vascular system lags far behind that of the blood vascular system, limited by available imaging technologies. We present a label-free optical imaging method that visualizes the lymphatic system with high contrast. We developed an orthogonal polarization imaging (OPI) in the shortwave infrared range (SWIR) and imaged both lymph nodes and lymphatic vessels of mice and rats in vivo through intact skin, as well as human mesenteric lymph nodes in colectomy specimens. By integrating SWIR-OPI with U-Net, a deep learning image segmentation algorithm, we automated the lymph node size measurement process. Changes in lymph nodes in response to cancer progression were monitored in two separate mouse cancer models, through which we obtained insights into pre-metastatic niches and correlation between lymph node masses and many important biomarkers. In a human pilot study, we demonstrated the effectiveness of SWIR-OPI to detect human lymph nodes in real time with clinical colectomy specimens. One Sentence Summary: We develop a real-time high contrast optical technique for imaging the lymphatic system, and apply it to anatomical pathology gross examination in a clinical setting, as well as real-time monitoring of tumor microenvironment in animal studies.

12.
Bioorg Med Chem ; 73: 117033, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202064

RESUMEN

Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as an effective strategy for drug discovery, given their unique advantages over target protein inhibition. The bromodomain and extra-terminal (BET) family proteins play a key role in regulating oncogene expression and are considered attractive therapeutic targets for cancer therapy. Considering the therapeutic potential of BET proteins in cancer and the marked attractiveness of PROTACs, BET-targeting PROTACs have been extensively pursued. Recently, BET-targeting PROTACs based on new E3 ligases and novel strategies, such as light-activated, macrocyclic, folate-caged, aptamer-PROTAC conjugation, antibody-coupling, and autophagy-targeting strategies, have emerged. In the present review, we provide a comprehensive summary of advances in BET-targeting PROTACs.


Asunto(s)
Neoplasias , Humanos , Ácido Fólico , Neoplasias/tratamiento farmacológico , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
13.
Front Aging Neurosci ; 14: 683295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273488

RESUMEN

Background: Aging is one of the most important risk factors of postoperative cognitive dysfunction (POCD); however, the mechanisms are still not completely understood. In this study, we explore the roles of matrix metalloproteinase-9 (MMP-9) in aged mice with POCD. Methods: Appendectomy was performed in 18-month-old C57BL/6 and MMP-9-/- mice under anesthesia to establish the POCD model. Learning and memory were assessed using the Morris water maze (MWM) or Barnes maze. Protein expression of MMP-9 was measured by Western blotting or enzyme-linked immunosorbent assay (ELISA). To explore the role of neutrophils-derived MMP-9 in POCD, we treated mice with anti-Gr-1 monoclonal antibody to deplete peripheral neutrophils. And the percentage of neutrophils and other leukocytes were detected by flow cytometry. We further used sodium fluorescein (NaFlu) to evaluate the blood-brain barrier (BBB) permeability. Results: The spatial learning and memory ability was injured, and expression of MMP-9 increased in both plasma and the hippocampus after anesthesia/surgery. However, cognitive dysfunction was alleviated in both MMP-9-/- and peripheral neutrophils-depleted mice. The permeability of BBB was increased after anesthesia/surgery while recused by anti-Gr-1 antibody administration. Conclusion: These findings suggest that peripheral neutrophils-derived MMP-9 could lead to POCD of aged mice through increasing the BBB permeability.

14.
J Agric Food Chem ; 70(14): 4328-4341, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357828

RESUMEN

Maca is a protein-enriched edible plant with immunomodulatory activity. However, the role of proteins in the immunomodulatory activity of maca is unclear. In this study, peptide products of maca proteins obtained through in vitro gastrointestinal digestion were isolated and purified, and the immunomodulatory activities of these peptides were assessed in macrophages (RAW 264.7 cells). The results show that the maca protein hydrolysate enhanced the phagocytic capacity and NO, TNF-α, and IL-6 secretion of RAW 264.7 cells. Forty-five peptides from known proteins of maca or the cruciferous family were identified by ultraperformance liquid chromatography-tandem mass spectrometry in the hydrolysate, and the peptide RNPFLP exhibited the strongest immunomodulatory activity. Antibody blocking, siRNA, pathway inhibitors, and western blot assays showed that RNPFLP-activated RAW 264.7 cells through the NF-κB and MAPK signaling pathways mediated by TLR2 and TLR4 receptors. An analysis of the structure-activity relationship showed that the N9-H60 active site in arginine plays an important role in the immunomodulatory activity of RNPFLP. This study provides a new understanding of the immunomodulatory activity of maca.


Asunto(s)
Lepidium , Animales , Lepidium/química , Ratones , FN-kappa B/metabolismo , Péptidos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hidrolisados de Proteína/farmacología , Células RAW 264.7
15.
Acta Cir Bras ; 36(11): e361106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35195182

RESUMEN

PURPOSE: To delve into the influence of paeoniflorin (PA) on abating primary biliary cholangitis (PBC)-induced liver fibrosis and its causative role. METHODS: Our team allocated the mice to control group, PA group, PBC group and PBC+PA group. We recorded the weight change of mice in each group. We used Masson staining for determining liver fibrosis, immunofluorescence staining for measuring tumor necrosis factor-α (TNF-α) expression, quantitative real-time polymerase chain reaction (qRT-PCR) for assaying related gene expression, as well as Western blot for testing related protein expression. RESULTS: The weight of PBC model mice declined. Twenty-four weeks after modeling, the positive rate of anti-mitochondrial antibody-M2 (AMA-M2) in PBC mice reached 100%. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline (HYP), laminin (LN), procollagen type III (PC III), and malondialdehyde (MDA) contents saliently waxed (p<0.01). Meanwhile, superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activity patently waned (p<0.01). Liver fibrosis levels were flagrantly higher (p<0.01), and TNF-α, NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin-18 (IL-18), and interleukin-1ß (IL-1ß) protein or gene expression were manifestly up-regulated (p<0.01). PA could restore the weight of PBC mice, strikingly restrain the positive expression of AMA-M2, and down-regulate serum ALP, ALT, AST, HYP, LN, PC III, MDA in PBC mice (p<0.01). PA could also significantly up-regulate SOD and GSH-px levels (p<0.01), down-regulate IL-1ß, IL-18, caspase-1, NLRP3, and TNF-α protein or gene expression in PBC mice (p<0.01) and inhibit liver fibrosis levels (p<0.01). CONCLUSIONS: PA can reduce PBC-induced liver fibrosis in mice and may function by curbing the formation of NLRP3.


Asunto(s)
Glucósidos/farmacología , Cirrosis Hepática , Monoterpenos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Aspartato Aminotransferasas , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
16.
Eur J Pain ; 26(5): 991-1005, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35138669

RESUMEN

BACKGROUND: Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS: We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, Western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS: EA treatment alleviated CCI surgery-induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS: EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs. SIGNIFICANCE: In a mouse model of chronic pain, electroacupuncture treatment increased levels of prostatic acid phosphatase (PAP: an ecto-nucleotidase known to relieve pain hypersensitivity) by inhibiting PAP degradation in dorsal root ganglions. This promoted extracellular ATP dephosphorylation, inhibited glia activation and eventually alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice. Our findings represent an important step forward in clarifying the mechanisms of pain relief afforded by acupuncture treatment.


Asunto(s)
Electroacupuntura , Neuralgia , Traumatismos de los Nervios Periféricos , Fosfatasa Ácida , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Animales , Ganglios Espinales/metabolismo , Masculino , Ratones , Neuralgia/metabolismo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Int J Biol Sci ; 18(2): 652-660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35002515

RESUMEN

Brain endothelial cells (ECs) are an important component of the blood-brain barrier (BBB) and play key roles in restricting entrance of possible toxic components and pathogens into the brain. However, identifying endothelial genes that regulate BBB homeostasis remains a time-consuming process. Although somatic genome editing has emerged as a powerful tool for discovery of essential genes regulating tissue homeostasis, its application in brain ECs is yet to be demonstrated in vivo. Here, we used an adeno-associated virus targeting brain endothelium (AAV-BR1) combined with the CRISPR/Cas9 system (AAV-BR1-CRISPR) to specifically knock out genes of interest in brain ECs of adult mice. We first generated a mouse model expressing Cas9 in ECs (Tie2Cas9). We selected endothelial ß-catenin (Ctnnb1) gene, which is essential for maintaining adult BBB integrity, as the target gene. After intravenous injection of AAV-BR1-sgCtnnb1-tdTomato in 4-week-old Tie2Cas9 transgenic mice resulted in mutation of 36.1% of the Ctnnb1 alleles, thereby leading to a dramatic decrease in the level of CTNNB1 in brain ECs. Consequently, Ctnnb1 gene editing in brain ECs resulted in BBB breakdown. Taken together, these results demonstrate that the AAV-BR1-CRISPR system is a useful tool for rapid identification of endothelial genes that regulate BBB integrity in vivo.


Asunto(s)
Dependovirus , Células Endoteliales/metabolismo , Edición Génica , Proteínas Luminiscentes/genética , beta Catenina/genética , Animales , Barrera Hematoencefálica/metabolismo , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Transgénicos , Células 3T3 NIH , ARN Guía de Kinetoplastida/genética , Proteína Fluorescente Roja
18.
Eur J Med Chem ; 231: 114144, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35093670

RESUMEN

The polycomb repressive complex 2 (PRC2), which comprised of the core subunits: Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste 12 (SUZ12), and Embryonic Ectoderm Development (EED), is an essential epigenetic gene silencer responsible for depositing repressive histone H3 lysine 27 trimethylation (H3K27me3) marks on chromatin. The aberrant activity of PRC2 is closely involved in tumorigenesis and progression, making its inhibition a viable strategy for epigenetic cancer therapy. Although the clinical development of small PRC2 inhibitors has made impressive progress, with one EZH2 inhibitor approved for cancer therapy and several other candidates in clinical trials, current EZH2 inhibitors are limited to treating certain hematological malignancies and have acquired drug resistance. EED is essential for PRC2 stabilization and allosterically stimulating PRC2 activity because it functions as a scaffold protein and an H3K27me3-recognizing protein. Thus, due to its novel mechanism of action, targeting EED provides a promising new strategy for inhibiting PRC2 function and exhibits the potential to overcome the issues encountered by EZH2 inhibitors. This review provides a comprehensive overview of available cancer therapy strategies that target EED, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and proteolysis-targeting chimeras (PROTACs).


Asunto(s)
Ectodermo , Neoplasias , Ectodermo/metabolismo , Ectodermo/patología , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Neoplasias/metabolismo , Complejo Represivo Polycomb 2
19.
IEEE Trans Med Imaging ; 41(6): 1560-1574, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35030076

RESUMEN

Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Vasos Retinianos
20.
Front Psychiatry ; 13: 1090149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733413

RESUMEN

Background: This study explored the effectiveness of pre-operative intravenous injection of butorphanol in the alleviation of emergence agitation (EA) in patients undergoing functional endoscopic sinus surgery (FESS). Methods: Patients (n = 708) were randomized into two groups. The butorphanol group (Group B, n = 358) received butorphanol infusion (20 ug/kg) before anesthesia induction, while the control group (Group C, n = 350) received an equal volume of normal saline infusion. General anesthesia was induced with sufentanil, propofol, and rocuronium, and was maintained with sevoflurane and remifentanil. Vasoactive drugs maintained the hemodynamic indices within 20% of the baseline. Results: The incidence of EA was significantly lower in Group B than that in Group C (Group B vs. C: 24.3% vs. 31.4%, respectively; P = 0.034). The times to spontaneous breathing (26.5 min vs. 23.7 min, P = 0.011), verbal response (36.0 min vs. 33.4 min, P = 0.012), and extubation (31.0 min vs. 28.7 min, P = 0.025) were longer in Group B, and the grade of cough (0.33 vs. 0.43, P = 0.024) at extubation in Group B was lower than that in Group C (P = 0.024). The mean arterial pressure at the end of the operation (P = 0.004) and at 5 min after extubation (P = 0.008) was higher and hypotension was less prominent (0.6% vs. 2.6%, P = 0.030) in Group B. Conclusion: Pre-operative intravenous injection of butorphanol decreased the incidence of EA after FESS and provided smooth and hemodynamically stable emergence without extending the stay in post-anesthesia care unit. Clinical trial registration: https://www.clinicaltrials.gov/, identifier NCT03398759.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA