Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
ACS Infect Dis ; 10(10): 3516-3527, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39283729

RESUMEN

Fungal keratitis (FK) is a blinding corneal infectious disease. The prognosis is frequently unfavorable due to fungal invasion and an excessive host inflammatory response. Licochalcone A (Lico A) exhibits a broad spectrum of pharmacological activities, encompassing antifungal, anti-inflammatory, antioxidation, and antitumor properties. However, the role of Lico A has not yet been studied in FK. In this study, we discovered that Lico A could disrupt Aspergillus fumigatus (A. fumigatus) biofilms, inhibit fungal growth and adhesion to host cells, induce alterations of hyphal morphology, and impair the cell membrane and cell wall integrity and mitochondrial structure of A. fumigatus. Lico A can alleviate the severity of FK in mice, reduce neutrophil infiltration and fungal load, and significantly decrease the pro-inflammatory cytokines in mouse corneas infected with A. fumigatus. In vitro, we also demonstrated that Lico A increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) around the nucleus in human corneal epithelial cells (HCECs) stimulated with A. fumigatus. We verified that the anti-inflammatory effect of Lico A is associated with the activation of the Nrf2/HO-1 axis. These results indicated that Lico A could provide a protective role in A. fumigatus keratitis through its anti-inflammatory and antifungal activities.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Chalconas , Hemo-Oxigenasa 1 , Queratitis , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Aspergillus fumigatus/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratones , Transducción de Señal/efectos de los fármacos , Humanos , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Chalconas/farmacología , Chalconas/química , Antifúngicos/farmacología , Antifúngicos/química , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Córnea/microbiología , Córnea/efectos de los fármacos , Femenino , Citocinas/metabolismo
2.
ACS Infect Dis ; 10(8): 2991-2998, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39083647

RESUMEN

Purpose: to explore the anti-inflammatory effects of a nanobody (Nb) specific to ß-glucan on fungal keratitis (FK). Methods: in order to verify the therapeutic and anti-inflammatory efficacy of Nb in FK, the severity of inflammation was assessed with inflammatory scores, hematoxylin-eosin (HE) staining, and myeloperoxidase (MPO) assays. In corneas of mice of FK model and human corneal epithelial cells stimulated by fungal hyphae, real-time reverse transcriptase polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were used to detect the expression levels of inflammatory cytokines and pattern recognition receptors (PRRs). In vivo, macrophages and neutrophils infiltration in the cornea stroma was detected by immunofluorescence (IFS) staining. Results: In murine models infected with Aspergillus fumigatus (A. fumigatus), Nb treatment could reduce the inflammatory scores. HE staining and MPO results showed Nb significantly alleviated corneal edema and reduced inflammatory cell infiltration 3 days post-infection. In addition, the expression levels of LOX-1 and Dectin-1 were significantly decreased in the Nb group in vivo. The expression of chemokines CCL2 and CXCL2 also decreased in the Nb group. Compared with the PBS group, the number of macrophages and neutrophils in the Nb group was significantly decreased, which was shown in IFS results. Moreover, Nb attenuated the expression of Dectin-1, LOX-1, and inflammatory mediators, including IL-6 and IL-8 in vitro. Conclusion: our study showed that Nb could alleviate FK by downregulating the expression of PRRs and inflammatory factors as well as reducing the infiltration of macrophages and neutrophils.


Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Modelos Animales de Enfermedad , Queratitis , Anticuerpos de Dominio Único , beta-Glucanos , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratones , beta-Glucanos/farmacología , Antiinflamatorios/farmacología , Humanos , Anticuerpos de Dominio Único/farmacología , Pared Celular/química , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/inmunología , Córnea/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología
3.
Invest Ophthalmol Vis Sci ; 65(8): 4, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953845

RESUMEN

Purpose: The purpose of this study was to investigate the role and mechanism of microtubule-associated protein light chain-3 (LC3)-associated phagocytosis (LAP) in the immune response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods: The formation of single-membrane phagosomes was visualized in the corneas of healthy or A. fumigatus-infected humans and C57BL/6 mice using transmission electron microscopy (TEM). Rubicon siRNA (si-Rubicon) was used to block Rubicon expression. RAW 264.7 cells or mice corneas were infected with A. fumigatus with or without pretreatment of si-Rubicon and scrambled siRNA. RAW 264.7 cells were pretreated with Dectin-1 antibody or Dectin-1 overexpressed plasmid and then stimulated with A. fumigatus. Flow cytometry was used to label macrophages in normal and infected corneas of mice. In mice with A. fumigatus keratitis, the severity of the disease was assessed using clinical scores. We used lentiviral technology to transfer GV348-Ubi-GFP-LC3-II-SV40-Puro Lentivirus into the mouse cornea. The GFP-LC3 fusion protein was visualized in corneal slices using a fluorescence microscope. We detected the mRNA and protein expressions of the inflammatory factors IL-6, IL-1ß, and IL-10 using real-time PCR (RT-PCR) and ELISA. We detected the expression of LAP-related proteins Rubicon, ATG-7, Beclin-1, and LC3-II using Western blot or immunofluorescence. Results: Accumulation of single-membrane phagosomes within macrophages was observed in the corneas of patients and mice with A. fumigatus keratitis using TEM. Flow cytometry (FCM) analysis results show that the number of macrophages in the cornea of mice significantly increases after infection with A. fumigatus. LAP-related proteins were significantly elevated in the corneas of mice and RAW 264.7 cells after infection with A. fumigatus. The si-Rubicon treatment elevated the clinical score of mice. In A. fumigatus keratitis mice, the si-Rubicon treated group showed significantly higher expression of IL-6 and IL-1ß and lower expression of IL-10 and LC3-II compared to the control group. In RAW 264.7 cells, treatment with the Dectin-1 overexpressed plasmid upregulated the expression of LAP-related proteins, a process that was significantly inhibited by the Dectin-1 antibody. Conclusions: LAP participates in the anti-inflammatory immune process of fungal keratitis (FK) and exerts an anti-inflammatory effect. LAP is regulated through the Dectin-1 signaling pathway in A. fumigatus keratitis.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Infecciones Fúngicas del Ojo , Queratitis , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Fagocitosis , Animales , Femenino , Humanos , Ratones , Aspergilosis/microbiología , Aspergilosis/metabolismo , Aspergilosis/inmunología , Córnea/metabolismo , Córnea/microbiología , Córnea/patología , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/metabolismo , Citometría de Flujo , Queratitis/microbiología , Queratitis/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
4.
Exp Eye Res ; 244: 109944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797260

RESUMEN

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Autofagia , Cinamatos , Depsidos , Infecciones Fúngicas del Ojo , Macrófagos , Especies Reactivas de Oxígeno , Ácido Rosmarínico , Depsidos/farmacología , Animales , Autofagia/efectos de los fármacos , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Cinamatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Modelos Animales de Enfermedad , Células RAW 264.7 , Citocinas/metabolismo , Fagocitosis/efectos de los fármacos
5.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593508

RESUMEN

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Asunto(s)
Antiinflamatorios , Aspergilosis , Aspergillus fumigatus , Isoflavonas , Queratitis , Animales , Aspergillus fumigatus/efectos de los fármacos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Queratitis/inmunología , Aspergilosis/tratamiento farmacológico , Aspergilosis/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Ratones , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Citocinas/metabolismo , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Biopelículas/efectos de los fármacos , Ratones Endogámicos C57BL , Córnea/patología , Córnea/efectos de los fármacos , Córnea/microbiología
6.
J Ocul Pharmacol Ther ; 40(1): 89-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38346287

RESUMEN

Purpose: To characterize the efficiency of glabridin alone and in combination with clinical antifungals in Aspergillus fumigatus keratitis. Methods: The broth microdilution method was performed to investigate whether glabridin exerted an antifungal role on planktonic cells and immature and mature biofilm. Antifungal mechanism was evaluated by Sorbitol and Ergosterol Assays. The synergistic effect of glabridin and antifungals was assessed through the checkerboard microdilution method and time-killing test. Regarding anti-inflammatory role, inflammatory substances induced by A. fumigatus were assessed by real-time quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Drug toxicity was assessed by Draize test in vivo. Macrophage phenotypes were examined by flow cytometry. Results: Regarding antifungal activity, glabridin destroyed fungal cell wall and membrane on planktonic cells and suppressed immature and mature biofilm formation. After combining with natamycin or amphotericin B, glabridin possessed a potent synergistic effect against A. fumigatus. Regarding anti-inflammatory aspects, Dectin-1, toll­like receptor (TLR)-2 and TLR-4 expression of human corneal epithelial cells were significantly elevated after A. fumigatus challenge and reduced by glabridin. The elevated expression of interleukin-1ß and tumor necrosis factor-alpha induced by A. fumigatus or corresponding agonists were reversed by glabridin, equivalent to the effect of corresponding inhibitors. Glabridin could also contribute to anti-inflammation by downregulating inflammatory mediator expression to suppress macrophage infiltration. Conclusions: Glabridin contributed to fungal clearance by destroying fungal cell wall and membrane, and disrupting biofilm. Combining glabridin with clinical antifungals was superior in reducing A. fumigatus growth. Glabridin exerted an anti-inflammatory effect by downregulating proinflammatory substance expression and inhibiting macrophage infiltration, which provide a potential agent and treatment strategies for fungal keratitis.


Asunto(s)
Aspergilosis , Infecciones Fúngicas del Ojo , Isoflavonas , Queratitis , Fenoles , Humanos , Animales , Ratones , Aspergillus fumigatus/fisiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL
7.
Curr Eye Res ; 49(1): 25-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37732765

RESUMEN

PURPOSE: To confirm the expression and investigate the role of LC3-associated phagocytosis (LAP) in dry eye disease (DED). METHODS: The DED model of mice was established by scopolamine subcutaneous injection in a low-humidity environment chamber. Tear secretion test and corneal fluorescein sodium staining were used to evaluate the severity of DED. Expression levels of Rubicon, microtubule-associated protein light chain 3-II (LC3-II), Beclin-1 and autophagy-related gene-7 (Atg-7) in corneas of mice with DED were tested by western blot. Cell Counting Kit-8 (CCK-8) assay was used to detect the effects of different concentrations of hypertonic solutions on the proliferation activity of human corneal epithelial cells (HCECs). The expression levels of Dectin-1, IL-6 and IL-1ß in HCECs after stimulation with different concentrations of hypertonic solutions were tested. The expressions of Rubicon, LC3-II, Beclin-1 and ATG-7 in HCECs were detected by reverse transcription polymerase chain reaction (RT-PCR). After being pretreated with 10 µM si-Rubicon, the severity of the disease was documented by corneal fluorescein sodium staining. And the expression levels of IL-6 and IL-1ß were also tested by RT-PCR. RESULTS: Compared with the normal control group, the corneal fluorescein sodium staining scores and tear secretion were significantly reduced. Rubicon, LC3-II, Beclin-1 and ATG-7 were significantly elevated. CCK-8 showed that the 400 and 450 mOsM hypertonic solutions did not affect the proliferation activity of HCECs. The expression of Dectin-1, IL-1ß and IL-6 were elevated after stimulation with 450 mOsM solution. LC3-II, Rubicon, ATG-7 and Beclin-1 increased after stimulation with 450 mOsM hyperosmolar solution in HCECs. Corneal fluorescein staining showed that si-Rubicon increased the severity of DED in mice. Moreover, the mRNA expressions of inflammatory factors IL-1ß and IL-6 in the cornea of mice were significantly increased. CONCLUSION: DED increased the expression of proteins associated with LAP. LAP could play an anti-inflammatory effect in DED.


Asunto(s)
Síndromes de Ojo Seco , Epitelio Corneal , Animales , Humanos , Ratones , Epitelio Corneal/metabolismo , Interleucina-6/metabolismo , Fluoresceína/metabolismo , Beclina-1/metabolismo , Inflamación/metabolismo , Fagocitosis , Interleucina-1beta/genética , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Soluciones Hipertónicas/metabolismo , Soluciones Hipertónicas/farmacología
8.
Cytokine ; 171: 156356, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677994

RESUMEN

PURPOSE: To investigate the antifungal and anti-inflammatory effects of quercetin in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Draize eye test was performed in mice to evaluate the toxicity of quercetin, and the antifungal effects on A. fumigatus were assessed via scanning electron microscopy (SEM), propidium iodide uptake, and adherence assay. In fungal keratitis (FK) mouse models, immunostaining was performed for investigating toll-like receptor 4 (TLR-4) expression and macrophage infiltration. Real-time PCR, ELISA, and Western blot were used to evaluate the expression of pro-inflammatory factors IL-1ß, TNF-α, and IL-6 in infected RAW264.7 cells. Cells were also treated with TLR-4 siRNA or agonist CRX-527 to investigate mechanisms underlying the anti-inflammatory activity of quercetin. RESULTS: Quercetin at 32 µM was non-toxic to corneal epithelial and significantly inhibited A. fumigatus growth and adhesion, and also altered the structure and reduced the number of mycelia. Quercetin significantly reduced macrophage infiltration in the mouse cornea, and attenuated the expression of TLR-4 in the corneal epithelium and stroma of mice with keratitis caused by A. fumigatus. In RAW264.7 cells infected by A. fumigatus, quercetin downregulated TLR-4 along with pro-inflammatory factors IL-1ß, TNF-α, and IL-6. RAW cells with TLR-4 knockdown had reduced expression of factors after A. fumigatus infection, which was decreased even further with quercetin treatment. In contrast, cells with CRX-527 had elevated inflammatory factors compared to control, which was significantly attenuated in the presence of quercetin. CONCLUSION: Quercetin plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal load, disrupting hyphae structure, macrophage infiltration, and suppressing inflammation response in macrophages via TLR-4 mediated signaling pathway.


Asunto(s)
Aspergillus fumigatus , Queratitis , Ratones , Animales , Receptor Toll-Like 4 , Quercetina/farmacología , Antifúngicos/uso terapéutico , Interleucina-6 , Factor de Necrosis Tumoral alfa/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL
9.
Int Immunopharmacol ; 116: 109782, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731151

RESUMEN

Fungal keratitis is an infectious vision-threatening disease that has a poor prognosis, and the clinical therapeutic drugs have multiple limitations, such as epithelial toxicity and low bioavailability. Therefore, new antifungal treatment strategies must be developed. 4-Methoxycinnamic acid (MCA) is a widely occurring natural phenolic acid that has been proven to have multiple effects, such as antibacterial, antifungal, anti-inflammatory, neuroprotective, and inhibiting cancer. In this research, we explored the effects and underlying mechanisms of MCA on A. fumigatus keratitis and the antifungal effects of the combination of MCA and natamycin (NATA) on A. fumigatus. We found that MCA exerts antifungal effects by inhibiting the synthesis of the fungal cell wall, changing the permeability of fungal cell membranes. Moreover, the MCA-NATA combination exhibited synergy for A. fumigatus. In addition, MCA exerted an anti-inflammatory effect by downregulating the inflammatory factors (IL-1ß, TNF-α, IL-6, and iNOS) in C57BL/6 mice and RAW264.7 cells. The anti-inflammatory mechanism of MCA was associated with the Mincle signal pathway. In summary, MCA acts as a potential therapeutic drug for fungal keratitis and a potential antifungal sensitizer for natamycin. MCA inhibits fungal cell wall synthesis, destroys the permeability of fungal cell membranes, and mediates the anti-inflammatory, immune response of the host.


Asunto(s)
Aspergilosis , Infecciones Fúngicas del Ojo , Queratitis , Animales , Ratones , Natamicina/farmacología , Natamicina/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergillus fumigatus , Ratones Endogámicos C57BL , Infecciones Fúngicas del Ojo/tratamiento farmacológico
10.
ACS Appl Mater Interfaces ; 15(5): 6371-6384, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700786

RESUMEN

Retinal neovascularization (RNV) is a typical feature of ischemic retinal diseases that can lead to traction retinal detachment and even blindness in patients, in which the vascular endothelial cell growth factor (VEGF) plays a pivotal role. However, most anti-VEGF drugs currently used for treating RNV, such as ranibizumab, need frequent and repeated intravitreal injections due to their short intravitreal half-life, which increases the incidence of complications. Herein, a hydrogel intravitreal drug delivery system (DDS) is prepared by a dynamic Schiff base reaction between aminated hyaluronic acid and aldehyde-functionalized Pluronic 127 for sustained release of ranibizumab. The prepared hydrogel system named HP@Ran exhibits excellent injectability, self-healing ability, structural stability, cytocompatibility, and blood compatibility. According to an in vitro drug release study, the hydrogel system continuously releases the model drug bovine serum albumin for more than 56 days. Importantly, in an in vivo rabbit persistent RNV model, the HP@Ran hydrogel system continuously releases pharmacologically active ranibizumab for more than 7 weeks and also exhibits superior anti-angiogenic efficacy over ranibizumab treatment by decreasing vascular leakage and neovascularization at 12 weeks. Thus, the developed HP@Ran hydrogel system possesses great potential for intravitreal DDS for the treatment of RNV.


Asunto(s)
Ranibizumab , Neovascularización Retiniana , Animales , Conejos , Ranibizumab/farmacología , Ranibizumab/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Retiniana/tratamiento farmacológico , Hidrogeles/química , Preparaciones de Acción Retardada/química , Biomimética , Factores de Crecimiento Endotelial Vascular
11.
Front Oncol ; 12: 958170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003786

RESUMEN

The intraocular malignancies, which mostly originate from the retina and uvea, exhibit a high incidence of blindness and even death. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular malignancies in adults and children, respectively. The high risks of distant metastases lead to an extremely poor prognosis. Nowadays, various epidemiological studies have demonstrated that diabetes is associated with the high incidence and mortality of cancers, such as liver cancer, pancreatic cancer, and bladder cancer. However, the mechanisms and interventions associated with diabetes and intraocular malignancies have not been reviewed. In this review, we have summarized the associated mechanisms between diabetes and intraocular malignancy. Diabetes mellitus is a chronic metabolic disease characterized by prolonged periods of hyperglycemia. Recent studies have reported that the abnormal glucose metabolism, insulin resistance, and the activation of the IGF/insulin-like growth factor-1 receptor (IGF-1R) signaling axis in diabetes contribute to the genesis, growth, proliferation, and metastases of intraocular malignancy. In addition, diabetic patients are more prone to suffer severe complications and poor prognosis after radiotherapy for intraocular malignancy. Based on the common pathogenesis shared by diabetes and intraocular malignancy, they may be related to interventions and treatments. Therefore, interventions targeting the abnormal glucose metabolism, insulin resistance, and IGF-1/IGF-1R signaling axis show therapeutic potentials to treat intraocular malignancy.

12.
Int J Ophthalmol ; 15(7): 1044-1052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919314

RESUMEN

AIM: To explore whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) is expressed in fungal keratitis in mice and investigate its role in this disease. METHODS: NOX2 expression was detected in C57BL/6 mice. After testing the inhibitory effect of diphenyleneiodonium chloride (DPI) on NOX2, its impact on clinical performance, myeloperoxidase levels, the number of colonies forming units, the level of H3, the generation of reactive oxygen species (ROS) and the release of cytokines [NF-κB, interleukin-17A (IL-17A), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), Nrf2, IL-10, and TGF-ß] were compared. A one-way ANOVA and an unpaired, two-tailed Student's t-test was used to determine the statistical significance. RESULTS: NOX2 expression was significantly increased after Aspergillus fumigatus injection in corneas and that this increase could be reduced by treatment with DPI. DPI treatment produced more severe inflammation and resulted in higher clinical scores, more neutrophils infiltration, a weakened ability to clear fungi, the release of fewer ROS and the formation of neutrophil extracellular traps. Treatment with DPI increased the expression of the proinflammatory cytokines NF-κB, IL-17A, IL-6, and TNF-α and decreased the expression of the anti-inflammatory cytokines Nrf2, IL-10 and TGF-ß compared to their expression levels without DPI treatment. CONCLUSION: NOX2 plays an important role against Aspergillus fumigatus in the mouse cornea through killing fungi and limiting the degree of inflammation.

13.
Curr Eye Res ; 47(10): 1366-1373, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35759617

RESUMEN

PURPOSE: The purpose of this research was to explore the antifungal and anti-inflammatory effects of perillaldehyde (PAE) in Aspergillus fumigatus (A. fumigatus) keratitis and the underlying mechanism. METHODS: The biofilm formation, adherence assay, and propidium iodide uptake test were used to determine the possible mechanism of PAE in terms of antifungal effects in vitro. The severity of corneal infection was evaluated by clinical scores. The immunofluorescence staining (IFS) was adopted to detect the number of macrophages in infected corneas. Draize test was performed to assess the ocular toxicity of PAE. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot reflected the expression of inflammatory cytokines and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in mice corneas and RAW264.7 cells. RESULTS: PAE was able to inhibit the formation of biofilm, reduce conidial adhesion, and damage the integrity of membranes to exert antifungal activity. In C57BL/6 mice models, PAE alleviated the severity of infected corneas, reduced the recruitment of macrophages and had low ocular toxicity. In addition, the mRNA and protein levels of TNF-α, CCL-2, and LOX-1 could be significantly decreased by the application of PAE after A. fumigatus infection in vivo and in vitro. CONCLUSION: Our study indicated that PAE protected against A. fumigatus keratitis by reducing fungal load, accumulation of macrophages, and inhibiting the expression of inflammatory cytokines.


Asunto(s)
Infecciones Fúngicas del Ojo , Queratitis , Animales , Antiinflamatorios , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergillus fumigatus/metabolismo , Citocinas/genética , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/prevención & control , Ratones , Ratones Endogámicos C57BL , Monoterpenos , Propidio/uso terapéutico , ARN Mensajero , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/uso terapéutico , Neuropatía Óptica Tóxica , Factor de Necrosis Tumoral alfa
14.
Mol Immunol ; 147: 50-61, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504058

RESUMEN

PURPOSE: To explore the therapeutic effect of chondroitin sulfate (CS) on Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: The nontoxic concentration of CS was determined using the Draize eye test and cell counting kit-8. Cell scratch test and cell proliferation test were evaluated the impact of CS on the proliferation and migration of human corneal epithelial cells (HCECs). Adherence assay and plate counting were used to detect fungal load in vivo and in vitro, respectively. Clinical score and hematoxylin-eosin (HE) staining were applied to assess the therapeutic effects of CS in an A. fumigatus keratitis mice model. The neutrophil infiltration and activity were detected by flow cytometry (FCM), immunofluorescence staining, and myeloperoxidase (MPO) assay. Toll-like receptor 4 (TLR-4) expression in RAW 264.7 cells and mouse cornea was detected by immunofluorescence staining. Real-time PCR (RT-PCR), western blot, and enzyme-linked immunosorbent assay (ELISA) were applied to examine the expression of inflammatory mediators. RESULTS: CS at 400 µg/mL (non-cytotoxic) significantly promoted proliferation and migration of HCECs. In an A. fumigatus keratitis mice model, CS treatment alleviated fungal keratitis (FK) severity by decreasing corneal fungal load and inhibiting neutrophil infiltration. In RAW 264.7 cells, the mRNA and protein levels of TLR-4, phosphorylated nuclear factor (NF)-κB (p-NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-a (TNF-α), cyclooxygenase 2 (COX-2), and macrophage inflammatory protein-2 (MIP-2) were remarkably lower in the siTLR-4 treated group, while higher in rTLR-4 treated group than in the corresponding control group. CS treatment suppressed rTLR-4 induced the mRNA and protein expression of TLR-4, p-NF-κB, IL-1ß, IL-6, COX-2, TNF-α, and MIP-2 in RAW cells. CONCLUSION: CS may ameliorate the prognosis of A. fumigatus keratitis by promoting corneal epithelial proliferation, inhibiting the recruitment and activity of neutrophils, and inhibiting the inflammatory response by down-regulation of the TLR-4/NF-κB signaling.


Asunto(s)
Aspergilosis , Queratitis , Animales , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergillus fumigatus , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/uso terapéutico , Ciclooxigenasa 2 , Modelos Animales de Enfermedad , Interleucina-6 , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Ratones , Ratones Endogámicos C57BL , FN-kappa B , ARN Mensajero , Receptor Toll-Like 4 , Factor de Necrosis Tumoral alfa/farmacología
15.
Exp Eye Res ; 216: 108960, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085580

RESUMEN

Fungal keratitis is one of leading reasons for blindness in the world, which causes corneal blindness mainly due to excessive inflammatory responses. Kaempferol (KAE) is a natural flavonoid which has potent anti-inflammatory effects. However, whether KAE plays protective roles in fungal keratitis and the potentially protective mechanisms are unrevealed. Here we first investigated the anti-inflammatory and antifungal effects of KAE on Aspergillus fumigatus (A. fumigatus) keratitis in C57BL/6 mice. We found that treatment of KAE ameliorated the severity of keratitis, inhibited macrophages and neutrophils recruitment, depressed corneal fungal load, and declined the expression of TLR4 and Dectin-1 in A. fumigatus infected mice corneas. And in activated hyphae or Curdlan stimulated macrophages, pretreatment of KAE also significantly decreased the mRNA and protein expression of IL-1ß, TNF-α, MIP-2 and the phosphorylated-p38 (p-p38)/p38 MAPK ratio. In summary, KAE ameliorated the prognosis of fungal keratitis in C57BL/6 mice by reducing corneal fungal load, depressing the inflammatory cells recruitment, and downregulating the expression of inflammatory factors, and those effects depended on the inhibition of Dectin-1 and p38 MAPK pathway.


Asunto(s)
Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Úlcera de la Córnea/tratamiento farmacológico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Quempferoles/uso terapéutico , Lectinas Tipo C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/fisiología , Recuento de Colonia Microbiana , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/microbiología , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Femenino , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Pronóstico
16.
Mol Vis ; 28: 441-450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601409

RESUMEN

Purpose: To investigate the therapeutic effect of lipoxin A4 (LXA4) on Aspergillus fumigatus (A. fumigatus)-stimulated human corneal epithelial cells (HCECs). Methods: The cell counting kit-8 (CCK-8) was performed in HCECs to evaluate the toxicity of LXA4. A cell scratch test was used to assess the impact of LXA4 on the migration of HCECs. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were applied to examine the expression of inflammatory mediators in A. fumigatus-stimulated HCECs. The nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and expression in HCECs were detected by immunofluorescence staining. Results: LXA4 at 0-10 nmol·L-1 (nM) had no significant cytotoxic effect on HCECs. LXA4 at a concentration of 1 nM and 10 nM significantly promoted the migration rate of HCECs. The mRNA and protein levels of pro-inflammatory mediators, including IL-1ß, TNF-α, and IL-6, were remarkably lower in the LXA4-treated group. LXA4 promoted the expression of Nrf2 and heme oxygenase 1 (HO-1) in A. fumigatus-stimulated HCECs compared with the PBS control group. Pretreatment with brusatol (BT, Nrf2 inhibitor) or Zine Protoporphyrin (Znpp, HO-1 inhibitor) receded the anti-inflammatory ability of LXA4. Conclusions: LXA4 plays a protective role in A. fumigatus-stimulated HCECs by inhibiting the expression of pro-inflammatory mediators through the Nrf2/HO-1 signaling pathway.


Asunto(s)
Aspergillus fumigatus , Hemo-Oxigenasa 1 , Humanos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Inflamación , Células Epiteliales/metabolismo , Mediadores de Inflamación/metabolismo
17.
Curr Eye Res ; 47(3): 343-351, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34766863

RESUMEN

PURPOSE: To investigate the anti-inflammatory and antifungal role of α-melanocyte stimulating hormone (α-MSH) in Aspergillus Fumigatus (A. fumigatus) keratitis. METHOD: Corneas of C57BL/6 mice were infected with A. Fumigatus. α-MSH (5 ul, 1×10-4 mmol/ml) was given by subconjunctival injection from day 1 to day 3 post infection (p.i.). After 3 days p.i., clinical score was recorded and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Proinflammatory mediators and pattern recognition receptors (PRRs) were detected. The number of neutrophils and macrophages was tested by immunofluorescence staining. The role of α-MSH in RAW264.7 cells after A. fumigatus stimulation were evaluated by PCR and Western blot, and MPKA protein levels including total-JNK (T-JNK), phosphorylated-JNK (P-JNK), total-ERK (T-ERK), and phosphorylated-ERK (P-ERK) were tested via Western blot with or without α-MSH treatment. RESULTS: Compared with PBS control group, α-MSH treatment alleviated disease response and decreased clinical score at 3 days p.i. HE staining showed less infiltration in corneal tissue after α-MSH treatment. Plate counting experiment showed that number of viable fungus in corneas of α-MSH treated group was less than control group. mRNA levels of IL-1ß, TNF-α, IL-6, MIP-2, LOX-1, Dectin-1, and iNOS were decreased. Protein levels of IL-1ß, TNF-α, IL-6, and Dectin-1 were decreased. α-MSH treatment also decreased the infiltrating neutrophils and macrophages. The levels of proinflammatory cytokines, Dectin-1 and LOX-1 stimulated by A. fumigatus, were also suppressed by pretreatment of α-MSH in RAW264.7 cells. The ratio of P-JNK/T-JNK and P-ERK/T-ERK was downregulated in α-MSH group compared with PBS control group. CONCLUSION: α-MSH alleviates the severity and decreases fungal load of A. fumigatus keratitis in mice. Migration of neutrophils and macrophages are restrained. α-MSH downregulates the expression of dectin-1 and the ratio of P-JNK/T-JNK and P-ERK/T-ERK in A. fumigatus infection.


Asunto(s)
Infecciones Fúngicas del Ojo , Queratitis , Animales , Antiinflamatorios/farmacología , Aspergillus fumigatus/fisiología , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/microbiología , Interleucina-6 , Queratitis/microbiología , Ratones , Ratones Endogámicos C57BL , Receptores Depuradores de Clase E/uso terapéutico , Factor de Necrosis Tumoral alfa , alfa-MSH/uso terapéutico
18.
Int Immunopharmacol ; 97: 107706, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33933850

RESUMEN

PURPOSE: To determine the role of galectin-3 (Gal-3) in cornea infected by Aspergillus fumigatus (A. fumigatus). METHODS: Gal-3 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were pretreated with or without rmGal-3 or Gal-3 siRNA and infected with A. fumigatus. Recombinant mouse (rm) Gal-3 stimulated polymorphonuclear neutrophilic leukocytes (PMNs). PMNs were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of Gal-3 siRNA. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of Gal-3, interleukin (IL)-1ß, IL-6, macrophage inflammatory protein 2 (MIP-2) and p-p38. PMNs infiltration was assessed by flow cytometry and myeloperoxidase (MPO) assay. RESULTS: Gal-3 expression was significantly elevated by A. fumigatus in mice corneas. rmGal-3 treatment increased clinical scores, PMNs infiltration, and cytokines expression, which were decreased by Gal-3 siRNA treatment. In PMNs, Gal-3 expression was also significantly increased by A. fumigatus. The rmGal-3 treatment upregulated proinflammatory cytokines secretion and p-p38 expression, which was significantly inhibited by Gal-3 siRNA. CONCLUSION: These data proved that A. fumigatus increased Gal-3 expression and elevated disease clinical scores, PMNs infiltration and cytokines expression through Gal-3. In PMNs, A. fumigatus upregulated IL-1ß and IL-6 secretion through the Gal-3 / p38 pathway.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Galectina 3/metabolismo , Queratitis/inmunología , Neutrófilos/inmunología , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Modelos Animales de Enfermedad , Femenino , Galectina 3/administración & dosificación , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Queratitis/microbiología , Queratitis/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Invest Ophthalmol Vis Sci ; 62(4): 16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33851975

RESUMEN

Purpose: To explore the role of IL-36α in corneas infected by Aspergillus fumigatus. Methods: The experimental group was comprised of 15 corneas with fungal keratitis, and 15 healthy donor corneas were included in the control group. IL-36α was detected in normal and infected corneas of humans and C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of recombinant mouse (rm) IL-36α and IL-36α neutralizing antibody (Ab). Primary macrophages were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of rmIL-36α. The severity of the disease was documented by clinical score and photographs with a slit lamp. PCR, western blot, and immunostaining were used to determine the expression of IL-36α, IL-1ß, IL-6, and TNF-α. Polymorphonuclear neutrophilic leukocyte infiltration was assessed by myeloperoxidase (MPO) assay and flow cytometry. Macrophage infiltration was tested by immunofluorescent staining and flow cytometry. Results: IL-36α mRNA and protein were significantly elevated in human and mice corneas after infection. The rmIL-36α treatment of C57BL/6 mice increased clinical score, MPO levels, macrophage infiltration, and expression of the proinflammatory cytokines IL-1ß, IL-6, and TNF-α compared with the infected controls, which showed a decrease due to IL-36α Ab treatment. In primary macrophages, IL-36α expression was also significantly increased by A. fumigatus. The rmIL-36α treatment upregulated IL-1ß, IL-6, and phosphorylated nuclear factor (NF)-κB expression, which was significantly inhibited by rmIL-36Ra. Conclusions: IL-36α act as a proinflammatory cytokine in A. fumigatus keratitis by promoting the infiltration of neutrophils and macrophages and increasing the secretion of IL-1ß, IL-6, and TNF-α, in addition to regulating expression of phosphorylated NF-κB.


Asunto(s)
Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/aislamiento & purificación , Regulación de la Expresión Génica , Interleucina-1/genética , Interleucina-1/farmacología , Queratitis/tratamiento farmacológico , FN-kappa B/genética , Animales , Aspergilosis/metabolismo , Modelos Animales de Enfermedad , Epitelio Corneal/metabolismo , Epitelio Corneal/microbiología , Epitelio Corneal/patología , Infecciones Fúngicas del Ojo/microbiología , Femenino , Humanos , Queratitis/metabolismo , Queratitis/microbiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/biosíntesis , Neutrófilos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
20.
Invest Ophthalmol Vis Sci ; 62(3): 38, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33783487

RESUMEN

Purpose: Isorhamnetin is a natural flavonoid with both antimicrobial and anti-inflammatory properties, but its effect on fungal keratitis (FK) remains unknown. The current study aims to investigate the antifungal and anti-inflammatory effects of isorhamnetin against mouse Aspergillus fumigatus keratitis. Methods: In vitro, the lowest effective concentration of isorhamnetin was assessed by minimum inhibitory concentration and cytotoxicity tests in human corneal epithelial cells (HCECs) and RAW264.7 cells. The antifungal property was investigated by scanning electron microscopy and propidium iodide uptake test. The anti-inflammatory effect of isorhamnetin in HCECs and RAW264.7 cells was observed by quantitative real-time polymerase chain reaction (qRT-PCR). In the eyes of mice with A. fumigatus keratitis, FK severity was evaluated using clinical score, plate counting, histological staining and periodic acid Schiff staining. In vivo, the anti-inflammatory effect of isorhamnetin was examined by immunofluorescence staining, myeloperoxidase assay, Western blot, enzyme-linked immunosorbent assay, and qRT-PCR. Results: In HCECs and RAW264.7 cells, isorhamnetin significantly inhibited A. fumigatus conidia growth and hyphae viability at 80 µg/mL without affecting cell viability. In vitro, isorhamnetin altered A. fumigatus hyphal morphology and membrane integrity. In A. fumigatus keratitis mouse model, isorhamnetin treatment alleviated the severity of FK by reducing corneal fungal load and inhibiting neutrophil recruitment. In addition, the mRNA and protein expression levels of TLR-2, TLR-4, Dectin-1, IL-1ß, and tumor necrosis factor-α were significantly decreased in isorhamnetin-treated groups in vivo and in vitro. Conclusions: Isorhamnetin improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of A. fumigatus, reducing the recruitment of neutrophils and downregulating inflammatory factors.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Citocinas/antagonistas & inhibidores , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Quercetina/análogos & derivados , Receptores de Reconocimiento de Patrones/antagonistas & inhibidores , Animales , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Western Blotting , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/ultraestructura , Infecciones Fúngicas del Ojo/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Femenino , Queratitis/metabolismo , Queratitis/microbiología , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Quercetina/uso terapéutico , Receptores de Reconocimiento de Patrones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA