Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1420004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381438

RESUMEN

Background: Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is mainly ameliorated through drugs or lifestyle changes, with limited treatment options. To date, numerous researchers have found that fertility nutrient supplements may benefit female reproductive health, but their direct impact on polycystic ovary syndrome risk remains unclear. Methods: Our research employs Mendelian Randomization to assess how fertility nutrients affect PCOS risk. Initially, we reviewed 49 nutrients and focused on 10: omega-3 fatty acids, calcium, dehydroepiandrosterone, vitamin D, betaine, D-Inositol, berberine, curcumin, epigallocatechin gallate, and metformin. Using methodologies of Inverse Variance Weighting and Mendelian Randomization-Egger regression, we examined their potential causal relationships with PCOS risk. Results: Our findings indicate omega-3 fatty acids reduced PCOS risk (OR=0.73, 95% CI: 0.57-0.94, P=0.016), whereas betaine increased it (OR=2.60, 95% CI: 1.09-6.17, P=0.031). No definitive causal relations were observed for calcium, dehydroepiandrosterone, vitamin D, D-Inositol, and metformin (P>0.05). Drug target Mendelian Randomization analysis suggested that increased expression of the berberine target gene BIRC5 in various tissues may raise PCOS risk (OR: 3.00-4.88; P: 0.014-0.018), while elevated expressions of curcumin target gene CBR1 in Stomach and epigallocatechin gallate target gene AHR in Adrenal Gland were associated with reduced PCOS risk (OR=0.48, P=0.048; OR=0.02, P=0.018, respectively). Conclusions: Our research reveals that specific fertility nutrients supplementation, such as omega-3 fatty acids, berberine, and curcumin, may reduce the risk of PCOS by improving metabolic and reproductive abnormalities associated with it.


Asunto(s)
Suplementos Dietéticos , Análisis de la Aleatorización Mendeliana , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/genética , Femenino , Ácidos Grasos Omega-3 , Nutrientes , Fertilidad/efectos de los fármacos , Factores de Riesgo
3.
J Biochem Mol Toxicol ; 38(7): e23762, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967723

RESUMEN

Given the malignancy of gastric cancer, developing highly effective and low-toxic targeted drugs is essential to prolong patient survival and improve patient outcomes. In this study, we conducted structural optimizations based on the benzimidazole scaffold. Notably, compound 8 f presented the most potent antiproliferative activity in MGC803 cells and induced cell cycle arrest at the G0/G1 phase. Further mechanistic studies demonstrated that compound 8 f caused the apoptosis of MGC803 cells by elevating intracellular reactive oxygen species (ROS) levels and activating the mitogen-activated protein kinase (MAPK) signaling pathway, accompanied by corresponding markers change. In vivo investigations additionally validated the inhibitory effect of compound 8 f on tumor growth in xenograft models bearing MGC803 cells without obvious toxicity. Our studies suggest that compound 8 f holds promise as a potential and safe lead compound for developing anti-gastric cancer agents.


Asunto(s)
Antineoplásicos , Bencimidazoles , Sistema de Señalización de MAP Quinasas , Neoplasias Gástricas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Bencimidazoles/química , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Chem Sci ; 15(26): 10002-10009, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966370

RESUMEN

Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-ß and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-ß of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.

5.
Toxics ; 12(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39058127

RESUMEN

Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.

6.
J Med Chem ; 67(15): 13305-13323, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39066713

RESUMEN

SHP2 plays a critical role in modulating tumor growth and PD-1-related signaling pathway, thereby serving as an attractive antitumor target. To date, no antitumor drugs targeting SHP2 have been approved, and hence, the search of SHP2 inhibitors with new chemical scaffolds is urgently needed. Herein, we developed a novel SHP2 allosteric inhibitor SDUY038 with a furanyl amide scaffold, demonstrating potent binding affinity (KD = 0.29 µM), enzymatic activity (IC50 = 1.2 µM) and similar binding interactions to SHP099. At the cellular level, SDUY038 exhibited pan-antitumor activity (IC50 = 7-24 µM) by suppressing pERK expression. Furthermore, SDUY038 significantly inhibited tumor growth in both xenograft and organoid models. Additionally, SDUY038 displayed acceptable bioavailability (F = 14%) and half-life time (t1/2 = 3.95 h). Conclusively, this study introduces the furanyl amide scaffold as a novel class of SHP2 allosteric inhibitors, offering promising lead compounds for further development of new antitumor therapies targeting SHP2.


Asunto(s)
Amidas , Antineoplásicos , Diseño de Fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Animales , Regulación Alostérica/efectos de los fármacos , Amidas/farmacología , Amidas/química , Amidas/síntesis química , Ratones , Línea Celular Tumoral , Relación Estructura-Actividad , Furanos/farmacología , Furanos/química , Furanos/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Proliferación Celular/efectos de los fármacos , Ratones Desnudos
7.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925513

RESUMEN

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.


Asunto(s)
Alcaloides de Amaryllidaceae , Tetracloruro de Carbono , Células Estrelladas Hepáticas , Janus Quinasa 2 , Cirrosis Hepática , Fenantridinas , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Alcaloides de Amaryllidaceae/farmacología , Tetracloruro de Carbono/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Masculino , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Línea Celular
8.
Transl Oncol ; 46: 101989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781861

RESUMEN

Lung cancer has one of the highest mortality rates worldwide, with non-small-cell lung cancer (NSCLC) constituting approximately 85% of all cases. Demethylzeylasteral (DEM), extracted from Tripterygium wilfordii Hook F, exhibits notable anti-tumor properties. In this study, we revealed that DEM could effectively induce NSCLC cell apoptosis. Specifically, DEM can dose-dependently suppress the viability and migration of human NSCLC cells. RNA-seq analysis revealed that DEM regulates the P53-signaling pathway, which was further validated by assessing crucial proteins involved in this pathway. Biacore analysis indicated that DEM has high affinity with the P53 protein. The CDX model demonstrated DEM's anti-tumor actions. This work provided evidence that DEM-P53 interaction stabilizes P53 protein and triggers downstream anti-tumor activities. These findings indicate that DEM treatment holds promise as a potential therapeutic approach for NSCLC, which warrants further clinical assessment in patients with NSCLC.

9.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658095

RESUMEN

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Asunto(s)
Antraquinonas , Proliferación Celular , Neoplasias Colorrectales , Quinasas Similares a Doblecortina , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Antraquinonas/farmacología , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos
10.
Phytomedicine ; 128: 155538, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552432

RESUMEN

OBJECTIVE: The effect of solamargine on lung adenocarcinoma and its effect on STAT1 signaling pathway mediated immune escape were studied through network pharmacology and in vitro and in vivo experiments. METHODS: The solamargine targets were screened using the TCMSP and the LUAD targets were screened using the GeneCard, OMIM, PharmGkb, TTD and DrugBank databases. PPI network analysis and target prediction were performed using GO and KEGG. Colony formation assay, EDU staining, wound healing, transwell assay, Hoechst and flow cytometry were used to detect the effects of solamargine on the proliferation, migration and apoptosis of LUAD. Western blotting (WB) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect P-STAT1 and PD-L1 expression. And immunofluorescence was used to detect P-STAT1 expression. In vivo experiments, C57BL/6 mice were divided into control group, low concentration group, high concentration group, positive control group and combination group. Every other day, following seven consecutive doses, the size of the tumor was assessed. Finally, the expressions of P-STAT1, STAT1, PD-L1 and apoptosis index proteins were detected by WB. RESULTS: The anti-LUAD effect of solamargine was found by wound healing, colony formation assay, transwell assay, hoechst and EdU staining. The results of network pharmacological analysis showed that solamargine could suppress STAT1 expression level. Further enrichment assay of STAT1 showed that STAT1 was associated with immune-related pathways. In addition, molecular signal analysis by WB and RT-qPCR indicated that solamargine could reduce the expression levels of P-STAT1 and PD-L1 in a concentration-dependent manner. According to the results of in vivo assays, combination of solamargine and immune checkpoint inhibitors (ICIs) durvalumab could significantly inhibit the growth of Lewis transplanted tumors in C57BL/6 mice, and no toxic side effect was recoded. CONCLUSION: These results indicated that solamargine could inhibit the proliferation and promote the apoptosis of LUAD. It also could reduce the expression level of P-STAT1 protein and inhibit the expression level of PD-L1. At the same time, the combination with the ICIs can better block the expression of PD-L1 in cells, thereby inhibiting the immune escape pathway of tumor cells and achieving anti-tumor effects. This study proposed a novel combined therapeutic approach, involving the inhibition of STAT1 by solamargine in conjunction with ICIs.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Antígeno B7-H1 , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Factor de Transcripción STAT1 , Factor de Transcripción STAT1/metabolismo , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Ratones , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células A549 , Inhibidores de Puntos de Control Inmunológico/farmacología
11.
Front Cell Dev Biol ; 12: 1252064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550378

RESUMEN

N6-methyladenosine (m6A) is the most abundant chemical modification in eukaryotic cells. It is a post-transcriptional modification of mRNA, a dynamic reversible process catalyzed by methyltransferase, demethylase, and binding proteins. Ferroptosis, a unique iron-dependent cell death, is regulated by various cell metabolic events, including many disease-related signaling pathways. And different ferroptosis inducers or inhibitors have been identified that can induce or inhibit the onset of ferroptosis through various targets and mechanisms. They have potential clinical value in the treatment of diverse diseases. Until now, it has been shown that in several cancer diseases m6A can be involved in the regulation of ferroptosis, which can impact subsequent treatment. This paper focuses on the concept, function, and biological role of m6A methylation modification and the interaction between m6A and ferroptosis, to provide new therapeutic strategies for treating malignant diseases and protecting the organism by targeting m6A to regulate ferroptosis.

12.
Chem Sci ; 15(8): 2937-2945, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404383

RESUMEN

An efficient method for the late-stage selective O-fluoroalkylation of tyrosine residues with a stable yet highly reactive fluoroalkylating reagent, 3,3-difluoroallyl sulfonium salts (DFASs), has been developed. The reaction proceeds in a mild basic aqueous buffer (pH = 11.6) with high efficiency, high biocompatibility, and excellent regio- and chemoselectivity. Various oligopeptides and phenol-containing bioactive molecules, including carbohydrates and nucleosides, could be selectively O-fluoroalkylated. The added vinyl and other functional groups from DFASs can be valuable linkers for successive modification, significantly expanding the chemical space for further bioconjugation. The synthetic utility of this protocol has been demonstrated by the fluorescently labeled anti-cancer drug and the synthesis of O-link type 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid-tyrosine3-octreotate (DOTA-TATE), showing the prospect of the method in medicinal chemistry and chemical biology.

13.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38355149

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proliferación Celular , Inhibidores de Proteínas Quinasas/efectos adversos
14.
Pharmaceutics ; 15(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140070

RESUMEN

Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.

15.
J Cancer ; 14(17): 3309-3320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928418

RESUMEN

Background: Non-small-cell lung cancer (NSCLC) is the most common histological subtype of lung cancer with significant morbidity and mortality rates worldwide. Cinobufagin, the primary component of Chansu and the major active ingredient of cinobufacini, has attracted widespread attention for its excellent anticancer effects, but its activity remains poorly characterized in NSCLC. Methods: The functions of cinobufagin treatment in anti-tumor was evaluated using various in vitro and in vivo assays. The change of STAT3 signaling by cinobufagin was analyzed using molecular docking, immunofluorescence technic and western blotting. Results: In vitro, we confirmed the inhibitory effect of cinobufagin on cell viability, proliferation, migration, epithelial-mesenchymal transition (EMT), as well as an apoptosis-inducing effect. The antitumor effects of cinobufagin were confirmed in vivo by measuring tumor growth in a mouse xenograft model. Cinobufagin was found to significantly inhibit the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at tyrosine 705 (Y705) in a time- and concentration-dependent manner. Moreover, cinobufagin reversed IL-6-induced nuclear translocation of STAT3. Conclusions: Our study has demonstrated that cinobufagin exerts an antitumor effect in non-small-cell lung cancer by blocking STAT3 signaling, and cinobufagin is a promising candidate agent for NSCLC therapy.

16.
Aging (Albany NY) ; 15(16): 8258-8274, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37651362

RESUMEN

BACKGROUND: The incidence of breast cancer (BC) worldwide has increased substantially in recent years. Epithelial-mesenchymal transition (EMT) refers to a crucial event impacting tumor heterogeneity. Although cinobufagin acts as an effective anticancer agent, the clinical use of cinobufagin is limited due to its strong toxicity. Acetyl-cinobufagin, a pre-drug of cinobufagin, was developed and prepared with greater efficacy and lower toxicity. METHODS: A heterograft mouse model using triple negative breast cancer (TNBC) cell lines, was used to evaluate the potency of acetyl-cinobufagin. Signal transducer and stimulator of transcription 3 (STAT3)/EMT involvement was investigated by gene knockout experiments using siRNA and Western blot analysis. RESULTS: Acetyl-cinobufagin inhibited proliferation, migration, and cell cycle S/G2 transition and promoted apoptosis in TNBC cells in vitro. In general, IL6 triggered the phosphorylation of the transcription factor STAT3 thereby activating the STAT3 pathway and inducing EMT. Mechanistically, acetyl-cinobufagin suppressed the phosphorylation of the transcription factor STAT3 and blocked the interleukin (IL6)-triggered translocation of STAT3 to the cell nucleus. In addition, acetyl-cinobufagin suppressed EMT in TNBC by inhibiting the STAT3 pathway. Experiments in an animal model of breast cancer clearly showed that acetyl-cinobufagin was able to reduce tumor growth. CONCLUSIONS: The findings of this study support the potential clinical use of acetyl-cinobufagin as a STAT3 inhibitor in TNBC adjuvant therapy.


Asunto(s)
Bufanólidos , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Interleucina-6 , Fosforilación , Modelos Animales de Enfermedad , Factor de Transcripción STAT3
17.
Comput Biol Med ; 158: 106831, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037146

RESUMEN

Copper-dependent cell death, called cuproptosis, is connected to tumor development, prognosis, and the immune response. Nevertheless, the function of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains unknown. This work used R software packages to classify the raw data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases of LUAD patients. Afterward, the connections of the various subgroups, clinical pathological traits, and immune infiltration (IMIF) features with the TME mutation status were explored. Ultimately, a nomogram and calibration curve were developed, aiming at enhancing the clinical application of CRG scores and estimating the survival probability of patients. Moreover, the relationships between cuproptosis and the molecular traits, immune cell infiltration of tumor tissue, prognosis, and clinical treatment of patients were investigated in this work. Subsequently, the CRG score was established to predict overall survival (OS), and its credible predictive ability in LUAD patients was identified. Afterward, a highly credible nomogram was created to contribute to the clinical viability of the CRG score. Furthermore, as demonstrated, gene signatures could be applied in assessing tumor immune cell infiltration, clinical traits, and prognosis. In addition, high tumor mutation burden, immunological activity, and significant survival probability were characterized by low CRG scores, and high CRG scores were related to immunosuppression and stromal pathway activation. The current work also discovered a predictive CRG-related signature for LUAD patients, probably contributing to TME trait clarification and more potent immunotherapy strategy exploration.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Calibración , Bases de Datos Factuales , Inmunoterapia , Neoplasias Pulmonares/genética , Apoptosis , Microambiente Tumoral/genética
18.
Biomed Pharmacother ; 161: 114412, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36827714

RESUMEN

Lung cancer is the most common cause of cancer related deaths worldwide with the highest mortality rate. Non-small cell lung cancer (NSCLC) accounts for about 85 % of lung cancers. Mitochondrial methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme and is the most differentially expressed metabolic enzyme in various tumors including lung cancer. However, little is known about how MTHFD2 functions in NSCLC. Integrin-linked kinase (ILK) signaling plays key a role in tumor progression including metastasis, proliferation and migration. Here, we show that MTHFD2 inhibition results in suppression of cell growth, migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC. Microarray analysis suggests that MTHFD2 is positively associated with ILK signaling based on western blotting results. In addition, the phosphorylation of AMPKα plays an essential role in MTHFD2 regulation of ILK signaling. Further, the small-molecule compound C18 inhibits MTHFD2 with great efficiency. C18 blocks MTHFD2/ILK signaling pathway and restrains cell growth, migration, invasion, and EMT of NSCLC and induces apoptosis. In brief, our study found that the positive impact of MTHFD2 is mediated via ILK signaling pathway in NSCLC. Thus, blocking MTHFD2 represents a promising therapeutic strategy against NSCLC clinically.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Transición Epitelial-Mesenquimal , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
19.
J Transl Med ; 20(1): 525, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371217

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common lung cancer with high mortality across the world, but it is challenging to develop an effective therapy for NSCLC. Celastrol is a natural bioactive compound, which has been found to possess potential antitumor activity. However, the underlying molecular mechanisms of celastrol activity in NSCLC remain elusive. METHODS: Cellular function assays were performed to study the suppressive role of celastrol in human NSCLC cells (H460, PC-9, and H520) and human bronchial epithelial cells BEAS-2B. Cell apoptosis levels were analyzed by flow cytometry, Hoechst 33342, caspase-3 activity analysis, and western blot analysis. Intracellular reactive oxygen species (ROS) were analyzed by flow cytometry and fluorescence microscope. Expression levels of endoplasmic reticulum (ER) stress-related proteins and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) were identified via western blot analysis. A heterograft model in nude mice was employed to evaluate the effect of celastrol in vivo. RESULTS: Celastrol suppressed the growth, proliferation, and metastasis of NSCLC cells. Celastrol significantly increased the level of intracellular ROS; thus, triggering the activation of the ER stress pathway and inhibition of the P-STAT3 pathway, and eventually leading to cell apoptosis, and the effects were reversed by the pre-treatment with N-Acetyl-L-cysteine (NAC). Celastrol also suppressed tumor growth in vivo. CONCLUSION: The outcomes revealed that celastrol plays a potent suppressive role in NSCLC in vitro and in vivo. Celastrol induces apoptosis via causing mitochondrial ROS accumulation to suppress the STAT3 pathway. Celastrol may have potential application prospects in the therapy of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Factor de Transcripción STAT3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Neoplasias Pulmonares/patología , Apoptosis , Línea Celular Tumoral , Proliferación Celular
20.
Pharmacol Res ; 183: 106389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934193

RESUMEN

Lung adenocarcinoma (LUAD) is associated with poor prognosis. Identifying novel cancer targets and helpful therapeutic strategies remains a serious clinical challenge. This study detected differentially expressed genes in The Cancer Genome Atlas (TCGA) LUAD data collection. We also identified a predictive DNA biomarker, G protein-coupled receptor 37 (GPR37), which was verified as a prognostic biomarker with a critical role in tumor progression. In human LUAD specimens and microarray analyses, we determined that GPR37 was significantly upregulated and associated with a poor prognosis. GPR37 downregulation markedly inhibited the proliferation and migration of LUAD both in vitro and in vivo. Mechanistically, GPR37 could bind to CDK6, thereby facilitating tumor progression in LUAD by inducing cell cycle arrest at the G1 phase. GPR37 also facilitates tumorigenesis in xenograft tumors in vivo. High-throughput screening for GPR37-targeted drugs was performed using the Natural Products Library, which revealed the potential of Hypocrellin B to inhibit GPR37 and cell growth in LUAD. We demonstrated that Hypocrellin B suppressed LUAD cell proliferation and migration both in vitro and in vivo via GPR37 inhibition. Collectively, our findings reveal the role of GPR37 in LUAD progression and migration and the potential of GPR37 as a target for the treatment of LUAD. Thus, the specific inhibition of GPR37 by the natural product Hypocrellin B may possess the potential for the treatment of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Biomarcadores , Proliferación Celular/fisiología , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Medicina de Precisión , Pronóstico , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA