Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioelectrochemistry ; 160: 108768, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897000

RESUMEN

2205 DSS is an excellent corrosion-resistant engineering metal material, but it is still threatened by microbiological corrosion. The addition of copper elements is a new approach to improving the resistance of 2205 DSS to microbiological corrosion. In this study, 2205-Cu DSS was compared with 2205 DSS to study its antimicrobial properties and resistance to microbiological corrosion in the presence of the electroactive bacterium Shewanella algae. The results showed that compared to 2205 DSS, the biofilm thickness and the number of live bacteria on the surface of 2205-Cu DSS were significantly reduced, demonstrating excellent antimicrobial properties against S. algae. Electrochemical tests and surface morphology characterization results showed that the corrosion rate and pitting of 2205-Cu DSS by S. algae were lower than that of 2205 DSS, indicating better resistance to microbiological corrosion. The good antimicrobial properties and resistance to microbiological corrosion exhibited by 2205-Cu DSS are attributed to the contact antimicrobial properties of copper elements in the 2205-Cu DSS matrix and the release of copper ions for antimicrobial effects. This study provides a new strategy for combating microbiological corrosion.

2.
Food Funct ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904163

RESUMEN

Eight polyprenylphenol derivatives were isolated from the wild edible mushroom Suillus granulatus, including seven novel compounds, named suillin F-L (2-8), and one previously identified compound (1). The structures of the new compounds were elucidated using HR-ESI-MS and 1D and 2D NMR data. The absolute configuration of compound 8 was assigned based on the comparison of the experimental and calculated ECD data. All isolated compounds were evaluated for their cytotoxicity against HepG2 cancer cell lines. Compounds 1 and 3-6 demonstrated significant antitumor activity compared to the positive control (cisplatin), with IC50 values ranging from 8.19 to 13.97 µM. Furthermore, DARTS assay and LC-MS/MS analysis were used to identify HSP90AA1 as the direct target of compound 5, and the interaction between compound 5 and HSP90AA1 was verified by molecular docking.

3.
Front Nutr ; 11: 1390256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721034

RESUMEN

Edible mushrooms are an important source of nutraceuticals and for the discovery of bioactive metabolites as pharmaceuticals. In this work, six new polyphenolic metabolites suillusol A-D (1-4), suillusinoic acid (5), ethyl suillusinoate (6), were isolated from the Suillus granulatus. The structures of new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy, nuclear magnetic resonance data, and single-crystal X-ray diffraction analysis. As far as we know, compound 1 represents an unprecedented type of natural product and compound 3 represents a new type of polyphenol fungal pigment, which may be biosynthetically related to thelephoric acid. The cytotoxicity against HepG2 cells of the new compounds were also evaluated. Compound 2 demonstrate significant inhibitory activity against HepG2 cells with IC50 values of 10.85 µM, surpassing that of positive control cisplatin. Moreover, compound 1 and 3 also exhibited moderate cytotoxic activity with their IC50 values measured at 35.60 and 32.62 µM, respectively. Our results indicate that S. granulatus is a rich source of chemical constituents that may provide new lead compounds for the development of anticancer agents.

4.
Int J Med Mushrooms ; 26(2): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421694

RESUMEN

The genus Suillus, also known as "Song mo," falls under the order Boletales and consists of various higher fungi. It establishes mycorrhizae primarily with pine trees and has a good taste and medicinal values. Herein, we reviewed the chemical compounds present in the genus Suillus, including polysaccharides, steroids, phenols, polyprenyl phenol derivatives, fatty acids, organic acids, and amino acids, and their reported bioactivities and potential applications. This review aims to promote the utilization of the resources belonging to the genus Suillus and serves as a theoretical basis for their future studies and clinical applications.


Asunto(s)
Agaricales , Basidiomycota , Aminoácidos , Ácidos Grasos , Fenol , Fenoles/farmacología
5.
Phytomedicine ; 116: 154877, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267692

RESUMEN

BACKGROUND: The flavonoid galangin (3,5,7-trihydroxyflavone) is derived from the root of Alpinia officinarum Hance, an edible and medicinal herb. Galangin has many biological activities, such as anti-inflammatory, anti-microbial, anti-viral, anti-obesogenic, and anti-oxidant effects. However, the anti-tumor mechanism of galangin remains unclear. PURPOSE: To elucidate the anti-tumor mechanisms of galangin in vitro and in vivo. METHODS: MTT, western blotting, immunoprecipitation, RT-PCR, and immunofluorescence assays were used to assess the mechanism of galangin inhibiting PD-L1 expression. The effect of galangin on T cell activity was analyzed in Hep3B/T cell co-cultures. Colony formation, EdU, migration, and invasion assays were performed to explore the effect of galangin on cancer progression and metastasis. Anti-tumor effects of galangin were investigated in a xenograft model. RESULTS: Galangin inhibited PD-L1 expression dose-dependently, which plays a major role in tumor progression. Moreover, galangin blocked STAT3 activation through the JAK1/JAK2/Src signaling pathway and Myc activation through the Ras/RAF/MEK/ERK signaling pathway. Galangin reduced PD-L1 expression by suppressing STAT3 and Myc cooperatively. Galangin increased the killing effect of T cells on tumor cells in Hep3B/T cell co-cultures. Moreover, galangin inhibited tumor cell proliferation, migration, and invasion through PD-L1. In vivo experiments showed that galangin suppressed tumor growth. CONCLUSION: Galangin enhances T-cell activity and inhibits tumor cell proliferation, migration, and invasion through PD-L1. The current study emphasizes the anti-tumor properties of galangin, offering new insights into the development of tumor therapeutics targeting PD-L1.


Asunto(s)
Antígeno B7-H1 , Linfocitos T , Humanos , Antígeno B7-H1/metabolismo , Ligandos , Línea Celular Tumoral , Linfocitos T/metabolismo , Flavonoides/farmacología , Apoptosis , Proliferación Celular , Factor de Transcripción STAT3/metabolismo
6.
J Appl Biomater Funct Mater ; 20: 22808000211065259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35086381

RESUMEN

PURPOSE: This study aims to evaluate the antibacterial properties of 304 Cu-bearing stainless steel (SS) with different Cu contents (0, 2.5, 4.5 wt.%) against oral biofilms of Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), and their mixture. METHODS: Bacterial biofilms on the surface of 304-Cu SS were characterized by plate counting, 4', 6-diamidino-2-phenylindole (DAPI) staining with aid of sanning electron microscopy (SEM) and 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). In addition, the inhibition zone method was also employed to evaluate the antibacterial properties of 304-Cu SS. Cell Counting Kit-8 (CCK-8) and flow cytometry were used to assess the cytotoxicity and apoptosis rate of 304-Cu SS, respectively. RESULTS: 304-4.5Cu SS could effectively inhibit the attachment, formation, activity, and metabolism of bacterial biofilm, possessing the best antibacterial properties exceeding 99.9% of antibacterial rate against S. mutans, S. sanguinis, and their mixture. The diameters of inhibition zones to S. mutans and S. sanguinis on the surface of 304-4.5Cu SS were 21.7 and 14.7 mm, respectively. The results of cell experiments in vitro showed that both 304-2.5Cu SS and 304-4.5Cu SS had no evident cytotoxicity with an identical grade 1. The apoptosis rate exhibited a gradually increased tendency with increase of the Cu content in 304 SS. CONCLUSIONS: 304-4.5Cu SS without cytotoxic effect on NIH3T3 cells has obvious antibacterial activity against S. mutans, S. sanguinis and their mixture. CLINICAL SIGNIFICANCE: The Cu-bearing stainless steel provides a new solution to be used as oral orthodontic devices for inhibiting oral microflora imbalance and enamel demineralization.


Asunto(s)
Biopelículas , Acero Inoxidable , Animales , Antibacterianos/farmacología , Ratones , Células 3T3 NIH , Streptococcus mutans
7.
BMC Med Inform Decis Mak ; 20(1): 204, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859189

RESUMEN

BACKGROUNDS: Knowledge discovery from breast cancer treatment records has promoted downstream clinical studies such as careflow mining and therapy analysis. However, the clinical treatment text from electronic health data might be recorded by different doctors under their hospital guidelines, making the final data rich in author- and domain-specific idiosyncrasies. Therefore, breast cancer treatment entity normalization becomes an essential task for the above downstream clinical studies. The latest studies have demonstrated the superiority of deep learning methods in named entity normalization tasks. Fundamentally, most existing approaches adopt pipeline implementations that treat it as an independent process after named entity recognition, which can propagate errors to later tasks. In addition, despite its importance in clinical and translational research, few studies directly deal with the normalization task in Chinese clinical text due to the complexity of composition forms. METHODS: To address these issues, we propose PASCAL, an end-to-end and accurate framework for breast cancer treatment entity normalization (TEN). PASCAL leverages a gated convolutional neural network to obtain a representation vector that can capture contextual features and long-term dependencies. Additionally, it treats treatment entity recognition (TER) as an auxiliary task that can provide meaningful information to the primary TEN task and as a particular regularization to further optimize the shared parameters. Finally, by concatenating the context-aware vector and probabilistic distribution vector from TEN, we utilize the conditional random field layer (CRF) to model the normalization sequence and predict the TEN sequential results. RESULTS: To evaluate the effectiveness of the proposed framework, we employ the three latest sequential models as baselines and build the model in single- and multitask on a real-world database. Experimental results show that our method achieves better accuracy and efficiency than state-of-the-art approaches. CONCLUSIONS: The effectiveness and efficiency of the presented pseudo cascade learning framework were validated for breast cancer treatment normalization in clinical text. We believe the predominant performance lies in its ability to extract valuable information from unstructured text data, which will significantly contribute to downstream tasks, such as treatment recommendations, breast cancer staging and careflow mining.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Neoplasias de la Mama/tratamiento farmacológico , Bases de Datos Factuales , Registros Electrónicos de Salud , Femenino , Humanos , Envío de Mensajes de Texto
8.
Front Plant Sci ; 11: 601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547573

RESUMEN

In conventional tea plantations, a large amount of pruned material returns to the soil surface, putting a high quantity of polyphenols into the soil. The accumulation of active allelochemicals in the tea rhizosphere and subsequent shift in beneficial microbes may be the cause of acidification, soil sickness, and regeneration problem, which may be attributed to hindrance of plant growth, development, and low yield in long-term monoculture tea plantation. However, the role of pruning leaf litter in soil sickness under consecutive tea monoculture is unclear. Here, we investigated soil samples taken from conventional tea gardens of different ages (2, 15, and 30 years) and under the effect of regular pruning. Different approaches including liquid chromatography-mass spectrometry (LC-MS) analysis of the leaf litter, metagenomic study of root-associated bacterial communities, and in vitro interaction of polyphenols with selected bacteria were applied to understand the effect of leaf litter-derived polyphenols on the composition and structure of the tea rhizosphere microbial community. Our results indicated that each pruning practice returns a large amount of leaf litter to each tea garden. LC-MS results showed that leaf litter leads to the accumulation of various allelochemicals in the tea rhizosphere, including epigallocatechin gallate, epigallocatechin, epicatechin gallate, catechin, and epicatechin with increasing age of the tea plantation. Meanwhile, in the tea garden grown consecutively for 30 years (30-Y), the phenol oxidase and peroxidase activities increased significantly. Pyrosequencing identified Burkholderia and Pseudomonas as the dominant genera, while plant growth-promoting bacteria, especially Bacillus, Prevotella, and Sphingomonas, were significantly reduced in the long-term tea plantation. The qPCR results of 30-Y soil confirmed that the copy numbers of bacterial genes per gram of the rhizosphere soil were significantly reduced, while that of Pseudomonas increased significantly. In vitro study showed that the growth of catechin-degrading bacteria (e.g., Pseudomonas) increased and plant-promoting bacteria (e.g., Bacillus) decreased significantly with increasing concentration of these allelochemicals. Furthermore, in vitro interaction showed a 0.36-fold decrease in the pH of the broth after 72 h with the catechin degradation. In summary, the increase of Pseudomonas and Burkholderia in the 30-Y garden was found to be associated with the accumulation of catechin substrates. In response to the long-term monoculture of tea, the variable soil pH along with the litter distribution negatively affect the population of plant growth-promoting bacteria (e.g., Sphingomonas, Bacillus, and Prevotella). Current research suggests that the removal of pruned branches from tea gardens can prevent soil sickness and may lead to sustainable tea production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA