Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cancer Cell Int ; 24(1): 114, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528618

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of digestive system tumor related death in the world. Unfortunately, effective chemopreventive agent is lack for patients with ESCC in clinical practice, which leads to the extremely high mortality rate. METHODS: A library of prescribed drugs was screened for finding critical anti-tumor properties in ESCC cells. The phosphoproteomics, kinase array, pulldown assay and drug affinity responsive target stabilization assay (DARTS) were applied to explore mechanisms and searched for synergistic targets. Established models of PDX in mice were used to determine the therapeutic effect of domperidone. RESULTS: After screening a library of prescribed drugs, we discovered that domperidone has anti-tumor properties. Domperidone, acting as a gastroprokinetic agent, has been widely used in clinic for gastrointestinal motility disorders. Despite limited research, there are indications that domperidone may have anti-tumor properties. In this study, we determined that domperidone significantly inhibited ESCC proliferation in vitro and in vivo. We employed phosphoproteomics to reveal p-ERK, and p-SMAD3 down-regulation upon domperidone treatment. Then, the results of kinase assay and pulldown assay further validated that domperidone directly combined with MEK1/2 and CDK4, leading to the inhibition of their kinase activity. Furthermore, our results revealed that MEK/ERK and CDK4/SMAD3 signal pathway were major pathways in domperidone against ESCC. CONCLUSION: Collectively, these findings suggest that domperidone serves as an effective "multi-target" inhibitor of MEK1/2 and CDK4, offering potential benefits for the chemoprevention of ESCC.

2.
Int J Biol Macromol ; 259(Pt 1): 129002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176501

RESUMEN

Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Humanos , Aptámeros de Nucleótidos/metabolismo , Prohibitinas , Doxorrubicina/farmacología , Neoplasias/tratamiento farmacológico , Biomarcadores , Técnica SELEX de Producción de Aptámeros/métodos , Línea Celular Tumoral
3.
Phytomedicine ; 123: 155235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128397

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive and deadly malignancy characterized by late-stage diagnosis, therapy resistance, and a poor 5-year survival rate. Finding novel therapeutic targets and their inhibitors for ESCC prevention and therapy is urgently needed. METHODS: We investigated the proviral integration site for maloney murine leukemia virus 3 (Pim-3) protein levels using immunohistochemistry. Using Methyl Thiazolyl Tetrazolium and clone formation assay, we verified the function of Pim-3 in cell proliferation. The binding and inhibition of Pim-3 by corynoline were verified by computer docking, pull-down assay, cellular thermal shift assay, and kinase assay. Cell proliferation, Western blot, and a patient-derived xenograft tumor model were performed to elucidate the mechanism of corynoline inhibiting ESCC growth. RESULTS: Pim-3 was highly expressed in ESCC and played an oncogenic role. The augmentation of Pim-3 enhanced cell proliferation and tumor development by phosphorylating mitogen-activated protein kinase 1 (MAPK1) at T185 and Y187. The deletion of Pim-3 induced apoptosis with upregulated cleaved caspase-9 and lower Bcl2 associated agonist of cell death (BAD) phosphorylation at S112. Additionally, binding assays demonstrated corynoline directly bound with Pim-3, inhibiting its activity, and suppressing ESCC growth. CONCLUSIONS: Our findings suggest that Pim-3 promotes ESCC progression. Corynoline inhibits ESCC progression through targeting Pim-3.


Asunto(s)
Alcaloides de Berberina , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Apoptosis
4.
Cancer Lett ; 582: 216596, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101610

RESUMEN

Patients with colorectal cancer (CRC) suffer from poor prognosis and lack effective drugs. Dihydroartemisinin (DHA) has anti-cancer potential but the mechanism remains unclear. We elucidated the effects and mechanism of DHA on CRC development with the aim of providing an effective, low-toxicity drug and a novel strategy for CRC. Herein, proliferation assay, transwell assay, tube formation assay, metastasis models, PDX model and AOM/DSS model were used to reveal the effects of DHA on CRC. The key pathway and target were identified by RNA-seq, ChIP, molecular docking, pull down and dual-luciferase reporter assays. As a result, DHA showed a strong inhibitory effect on the growth, metastasis and angiogenesis of CRC with no obvious toxicity, and the inhibitory effect was similar to that of the clinical drug Capecitabine (Cap). Indeed, DHA directly targeted GSK-3ß to inhibit CRC development through the GSK-3ß/TCF7/MMP9 pathway. Meaningfully, DHA in combination with Cap enhanced the anti-cancer effect, and alleviated Cap-induced diarrhoea, immunosuppression and inflammation. In conclusion, DHA has the potential to be an effective and low-toxicity drug for the treatment of CRC. Furthermore, DHA in combination with Cap could be a novel therapeutic strategy for CRC with improved efficacy and reduced side effects.


Asunto(s)
Artemisininas , Neoplasias Colorrectales , Humanos , Capecitabina/farmacología , Capecitabina/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Neoplasias Colorrectales/patología , Metaloproteinasa 9 de la Matriz , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Proliferación Celular , Factor 1 de Transcripción de Linfocitos T
5.
Oncoimmunology ; 12(1): 2282250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126034

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive tract with a low 5-year survival rate due to the lack of effective treatment methods. Although therapeutic monoclonal antibodies (mAbs) now play an important role in cancer therapy, effective targeted mAbs are still lacking for ESCC. B7-H3 is highly expressed in a variety of tumors and has emerged as a promising therapeutic target. Several mAbs against B7-H3 have advanced to clinical trials, but their development has not yet been pursued for ESCC. Here, we developed a humanized and Fc-engineered anti-B7H3 mAb 24F-Hu-mut2 and systematically evaluated its anti-tumor activity in vitro and in vivo. The 24F-Hu-mut2 was humanized and modified in Fc fragment to obtain stronger antibody-dependent cell-mediated cytotoxicity(ADCC) activity and nanomolar affinity. Furthermore, both of ESCC cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models indicated that 24F-Hu-mut2 displayed potent in vivo anti-tumor activity. In addition, a computational docking model showed that the mAb bound to IgC1 and IgC2 domain of B7-H3, which is closer to the cell membrane. Consistently, our ELISA results verified the binding of 24F-Hu-WT and IgC1 and IgC2. Our results indicate that 24F-Hu-mut2 has significant anti-ESCC activity both in vitro and in vivo, and this monoclonal antibody may be a promising antibody against ESCC and other B7-H3 overexpressing tumors.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos
6.
Oncogene ; 42(32): 2456-2470, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400530

RESUMEN

Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Mitocondrias , Humanos , Mitocondrias/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Colesterol , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transportador 1 de Casete de Unión a ATP/genética
7.
Cancer Gene Ther ; 30(6): 917-925, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922546

RESUMEN

As one of the most essential components of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) interact extensively with cancer cells and other stromal cells to remodel TME and participate in the pathogenesis of cancer, which earmarked themselves as new promising targets for cancer therapy. Numerous studies have highlighted the heterogeneity and versatility of CAFs in most cancer types. Thus, the identification and appropriate use of CAF-related genes (CAFGenes) in the context of specific cancer types will provide critical insights into disease mechanisms and CAF-related therapeutic targets. In this study, we collected and curated 5421 CAFGenes identified from small- or large-scale experiments, encompassing 4982 responsors that directly or indirectly participate in cancer malignant behaviors managed by CAFs, 1069 secretions that are secreted by CAFs and 281 regulators that contribute in modulating CAFs in human and mouse, which covered 24 cancer types. For these human CAFGenes, we performed gene expression and prognostic marker-based analyses across 24 cancer types using TCGA data. Furthermore, we provided annotations for CAF-associated proteins by integrating the knowledge of protein-protein interaction(s), drug-target relations and basic annotations, from 9 public databases. CAFrgDB (CAF related Gene DataBase) is free for academic research at http://caf.zbiolab.cn and we anticipate CAFrgDB can be a useful resource for further study of CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Animales , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Pronóstico , Comunicación Celular , Microambiente Tumoral/genética
8.
Cell Death Dis ; 14(2): 118, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781836

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Proliferación Celular , 2-Naftilamina/uso terapéutico , Línea Celular Tumoral , Apoptosis , Quinasas Asociadas a rho
9.
Oncogene ; 42(15): 1209-1223, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841865

RESUMEN

Targeted therapy attempts are needed to enhance esophageal squamous cell carcinoma (ESCC) patients' overall survival and satisfaction of life. Nuclear factor erythroid 2-related factor 2 (NRF2), as a high-confidence cancer driver gene, controls the antioxidant response, metabolic balance and redox homeostasis in cancer and is regarded as a potent molecular target for cancer treatment. Here, we attempted to find a new NRF2 inhibitor and study the underlying molecular mechanism in ESCC. We found that up-regulated NRF2 protein was negatively correlated with patient prognosis and promoted tumor proliferation in ESCC. Moreover, Pizotifen malate (PZM), a FDA-approved medication, bound to the Neh1 domain of NRF2 and prevented NRF2 protein binding to the ARE motif of target genes, suppressing transcription activity of NRF2. PZM treatment suppressed tumor development in ESCC PDX model by inducing ferroptosis via down-regulating the transcription of GPX4, GCLC, ME1 and G6PD. Our study illustrates that the over expression of NRF2 indicates poor prognosis and promotes tumor proliferation in ESCC. PZM, as a novel NRF2 inhibitor, inhibits the tumor growth by inducing ferroptosis and elucidates a potent NRF2-based therapy strategy for patients with ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Malatos/uso terapéutico , Pizotilina/uso terapéutico , Carcinoma de Células Escamosas/patología , Ferroptosis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
10.
Mol Carcinog ; 62(4): 517-531, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36645220

RESUMEN

Esophageal squamous cell carcinoma (ESCC) accounts for 90% of esophageal cancers and has a high mortality rate worldwide. The 5-year survival rate of ESCC patients in developing countries is <20%. Hence, there is an urgent need for developing new and effective treatments that are based on newly-discovered emerging molecules and pathways to prevent ESCC occurrence and recurrence. We investigated the effects of Daurisoline, a bis-benzylisoquinoline alkaloid extracted from the rhizome of menisperum dauricum, on ESCC cell proliferation and elucidated the molecular mechanisms underlying its functions. To explore the effects of Daurisoline on ESCC growth in vitro and in vivo, cell proliferation assays and anchorage-independent growth assays were performed and a patient-derived xenograft (PDX) model was established. Subsequently, phosphoproteomics, molecular docking analysis, pull down assays, mutation experiments and in vitro kinase assay were performed to explore the mechanism of Daurisoline's function on ESCC. Daurisoline inhibited ESCC proliferation in vitro and reduced ESCC PDX exnograft growth in vivo by reducing ERK1/2 phosphorylation. Furthermore, it directly bound to MEK1 (at Asn78 and Lys97) and MEK2 (at Asp194 and Asp212) kinases to inactivate the ERK1/2 signaling pathway. Our results suggest that Daurisoline is a dual inhibitor of MEK1 and MEK2 and suppresses ESCC growth both in vitro and in vivo by inactivating the ERK1/2 signaling pathway. This is first report on the use of MEK inhibitor for ESCC and highlights its potential applications for ESCC treatment and prevention.


Asunto(s)
Bencilisoquinolinas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Simulación del Acoplamiento Molecular , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Bencilisoquinolinas/farmacología , Regulación Neoplásica de la Expresión Génica
11.
Front Med ; 17(2): 290-303, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36580233

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer death worldwide. It is urgent to develop new drugs to improve the prognosis of ESCC patients. Here, we found benzydamine, a locally acting non-steroidal anti-inflammatory drug, had potent cytotoxic effect on ESCC cells. Benzydamine could suppress ESCC proliferation in vivo and in vitro. In terms of mechanism, CDK2 was identified as a target of benzydamine by molecular docking, pull-down assay and in vitro kinase assay. Specifically, benzydamine inhibited the growth of ESCC cells by inhibiting CDK2 activity and affecting downstream phosphorylation of MCM2, c-Myc and Rb, resulting in cell cycle arrest. Our study illustrates that benzydamine inhibits the growth of ESCC cells by downregulating the CDK2 pathway.


Asunto(s)
Bencidamina , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Fosforilación , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Quinasa 2 Dependiente de la Ciclina
12.
Anal Chem ; 94(49): 17212-17222, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36459499

RESUMEN

Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), poses a serious threat to human health. It is urgently needed to develop recognition tools and discover molecular targets for early diagnosis and targeted therapy of esophageal cancer. Here, we developed several DNA aptamers that can bind to ESCC KYSE410 cells with a nanomolar range of dissociation constants by using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). The selected A2 aptamer is found to strongly bind with multiple cancer cells, including several ESCC cell lines. Tissue imaging displayed that the A2 aptamer can specifically recognize clinical ESCC tissues but not the adjacent tissues. Moreover, we identified integrin ß1 as the binding target of A2 through pull-down and RNA interference assays. Meanwhile, molecular docking and mutation assays suggested that A2 probably binds to integrin ß1 through the nucleotides of DA16-DG21, and competitive binding and structural alignment assays indicated that A2 shares the overlapped binding sites with laminin and arginine-glycine-aspartate ligands. Furthermore, we engineered A2-induced targeted therapy for ESCC. By constructing A2-tethered DNA nanoassemblies carrying multiple doxorubicin (Dox) molecules as antitumor agents, inhibition of tumor cell growth in vitro and in vivo was achieved. This work provides a useful targeting tool and a potential molecular target for cancer diagnosis and targeted therapy and is helpful for understanding the integrin mechanism and developing integrin inhibitors.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Aptámeros de Nucleótidos/química , Integrina beta1/metabolismo , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Ligandos , Técnica SELEX de Producción de Aptámeros
13.
Cancers (Basel) ; 14(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892850

RESUMEN

Gastric cancer (GC) ranks fifth in global incidence and fourth in mortality. The current treatments for GC include surgery, chemotherapy and radiotherapy. Although treatment strategies for GC have been improved over the last decade, the overall five-year survival rate remains less than 30%. Therefore, there is an urgent need to find novel therapeutic or preventive strategies to increase GC patient survival rates. In the current study, we found that tegaserod maleate, an FDA-approved drug, inhibited the proliferation of gastric cancer cells, bound to MEK1/2 and suppressed MEK1/2 kinase activity. Moreover, tegaserod maleate inhibited the progress of gastric cancer by depending on MEK1/2. Notably, we found that tegaserod maleate suppressed tumor growth in the patient-derived gastric xenograft (PDX) model. We further compared the effect between tegaserod maleate and trametinib, which is a clinical MEK1/2 inhibitor, and confirmed that tegaserod maleate has the same effect as trametinib in inhibiting the growth of GC. Our findings suggest that tegaserod maleate inhibited GC proliferation by targeting MEK1/2.

14.
Br J Oral Maxillofac Surg ; 60(5): 635-638, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35210104

RESUMEN

Papillary thyroid carcinomas (PTC) arising from the isthmus have aggressive clinical and pathological features, especially regarding the Delphian lymph node (DLN), which are associated with poor overall and disease-specific survival of patients with head and neck cancer. In the present study, we evaluated clinicopathological characteristics in 195 DLN-positive isthmus PTCs (14.9%) and their lymph node metastatic pattern in 1305 isthmus PTC patients in our hospital between January 2016 and July 2019. Furthermore, a multivariate analysis was conducted to investigate independent risk factors for isthmus PTC with a positive DLN. The results showed that a positive DLN was significantly related to tumour size, extrathyroid extension, median number of DLN, and metastasis to the central, bilateral central, lateral, and pretracheal lymph nodes. Meanwhile, patients with DLN-positive PTC had a significantly increased incidence of suspected preoperative lymph node status than patients with DLN-negative PTC. Multivariate logistic regression of DLN metastasis in PTC located in the isthmus showed that tumour size, extrathyroid extension, and metastasis to the central, bilateral central, lateral, and pretracheal lymph nodes, were independent risk factors.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Disección del Cuello , Estudios Retrospectivos , Factores de Riesgo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Tiroidectomía/métodos
15.
Br J Cancer ; 126(7): 1037-1046, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34912075

RESUMEN

BACKGROUND: Due to the high recurrence and low 5-year survival rates of esophageal squamous cell carcinoma (ESCC) after treatment, the discovery of novel drugs for recurrence chemoprevention is of particular importance. METHODS: We screened the FDA-approved drug library and found that Nuplazid, an atypical antipsychotic that acts as an effective 5-HT 2 A receptor inverse agonist, could potentially exert anticancer effects in vitro and in vivo on ESCC. RESULTS: Pull-down results indicated that Nuplazid binds with p21-activated kinase 4 (PAK4), and a kinase assay showed that Nuplazid strongly suppressed PAK4 kinase activity. Moreover, Nuplazid exhibited inhibitory effects on ESCC in vivo. CONCLUSIONS: Our findings indicate that Nuplazid can suppress ESCC progression through targeting PAK4.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Piperidinas , Urea/análogos & derivados , Quinasas p21 Activadas/metabolismo
16.
Front Oncol ; 11: 683241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422635

RESUMEN

Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two major types of esophageal cancer (EC). ESCC accounts for 90% of EC. Recurrence after primary treatment is the main reason for poor survival. Therefore, recurrence prevention is a promising strategy for extending the 5-year survival rate. Here, we found tegaserod maleate could inhibit ESCC proliferation both in vivo and in vitro. Proteomics analysis revealed that tegaserod maleate suppressed the peroxisome signaling pathway, in which the key molecules peroxisome membrane protein 11B (PEX11B) and peroxisome membrane protein 13 (PEX13) were downregulated. The immunofluorescence, catalase activity assay, and reactive oxygen species (ROS) confirmed that downregulation of these proteins was related to impaired peroxisome function. Furthermore, we found that PEX11B and PEX13 were highly expressed in ESCC, and knockout of PEX11B and PEX13 further demonstrated the antitumor effect of tegaserod maleate. Importantly, tegaserod maleate repressed ESCC tumor growth in a patient-derived xenograft (PDX) model in vivo. Our findings conclusively demonstrated that tegaserod maleate inhibits the proliferation of ESCC by suppressing the peroxisome pathway.

17.
Cell Death Discov ; 7(1): 166, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34226508

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a major type of esophageal cancer. The prognosis of patients with ESCC remains poor because of the high morbidity and mortality of the disease. One strategy for drug discovery for ESCC treatment or prevention is screening FDA-approved drugs. In the present study, we found that the antitussive agent cloperastine can inhibit the proliferation of ESCC cells. However, the underlying mechanism was unclear. To determine the mechanism of this inhibitory effect, we performed proteomic analysis using KYSE150 cells treated with cloperastine and DMSO. The results identified several down-regulated signaling pathways included those of three key proteins (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 1, NADH ubiquinone oxidoreductase subunit S5, and cytochrome C oxidase subunit 6B1) involved in oxidative phosphorylation. Meanwhile, we observed that oxidative phosphorylation in mitochondria was inhibited by the drug. Importantly, cloperastine suppressed ESCC growth in a xenograft mouse model in vivo. Our findings revealed that cloperastine inhibits the proliferation of ESCC in vivo and in vitro by suppressing mitochondrial oxidative phosphorylation.

18.
Neoplasia ; 23(7): 663-675, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34144266

RESUMEN

Esophageal mucosa undergoes mild, moderate, severe dysplasia, and other precancerous lesions and eventually develops into carcinoma in situ, and understanding the developmental progress of esophageal precancerous lesions is beneficial to prevent them from developing into cancer. DNA polymerase ß (Polß), a crucial enzyme of the base excision repair system, plays an important role in repairing damaged DNA and maintaining genomic stability. Abnormal expression or deletion mutation of Polß is related to the occurrence of esophageal cancer, but the role of Polß deficiency in the esophageal precancerous lesions is still unclear. Here, esophageal mucosa Polß-knockout mice were used to explore the relationship of Polß deficiency with esophageal precancerous lesions. First, we found the degree and number of esophageal precancerous lesions in Polß-KO mice were more serious than those in Polß-Loxp mice after N-nitrosomethylbenzylamine (NMBA) treatment. Whole exome sequencing revealed that deletion of Polß increased the frequency of gene mutations. Gene expression prolife analysis showed that the expression of proteins correlated to cell proliferation and the cell cycle was elevated in Polß-KO mice. We also found that deletion of Polß promoted the proliferation and clone formation as well as accelerated cell cycle progression of human immortalized esophageal epithelial cell line SHEE treated with NMBA. Our findings indicate that Polß knockout promotes the occurrence of esophageal precancerous lesions.


Asunto(s)
ADN Polimerasa beta/deficiencia , Neoplasias Esofágicas/etiología , Lesiones Precancerosas/etiología , Animales , Línea Celular Tumoral , Biología Computacional , Daño del ADN/efectos de los fármacos , ADN Polimerasa beta/genética , Replicación del ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Perfilación de la Expresión Génica , Inestabilidad Genómica , Inmunohistoquímica , Ratones , Mutación , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transcriptoma , Secuenciación del Exoma
19.
Analyst ; 146(13): 4180-4187, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34105524

RESUMEN

Esophageal cancer is the ninth most common cancer and the sixth most common cause of cancer-related death worldwide, and the esophageal squamous cell carcinoma (ESCC) subtype accounts for about 90% of all cases of esophageal cancer globally. Currently, ESCC is usually diagnosed in late stages, and targeted therapy is lacking. Therefore, the development of ESCC-specific recognition molecules for an early detection and targeted treatment of ESCC is urgently needed. Aptamers are an excellent molecular recognition tool with unique advantages. In this manuscript, three aptamers (S2, S3, and S8) specific to ESCC cells were successfully screened via cell-SELEX. The experimental results displayed the high affinities of the three aptamers for target KYSE150 cells with dissociation constants in the nanomolar range. The specificity evaluation showed that S2 only bound target KYSE150 cells, but S3 and S8 were capable of targeting a series of ESCC cells. Moreover, several truncated aptamers were generated through sequence optimization. In particular, an ultrashort aptamer S3-2-3 with only 18 bases was successfully obtained; after labeling with Cy5 dyes, it was feasible for the specific imaging of ESCC tissues. Furthermore, the target types of the selected aptamers were preliminarily identified as membrane proteins, and target proteins could be captured by S3-2-3, which may be useful for biomarker discovery. Therefore, the selected aptamers hold great potential for clinical diagnosis, biomarker discovery, and the targeted therapy of ESCC.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Línea Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , Técnica SELEX de Producción de Aptámeros
20.
J Cell Mol Med ; 25(4): 2176-2189, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33354912

RESUMEN

Circulating exosomes delivering microRNAs are involved in the occurrence and development of cardiovascular diseases. How are the circulating exosomes involved in the repair of endothelial injury in acute myocardial infarction (AMI) convalescence (3-7 days) was still not clear. In this study, circulating exosomes from AMI patients (AMI-Exo) and healthy controls (Normal-Exo) were extracted. In vitro and in vivo, our study showed that circulating exosomes protected endothelial cells (HUVECs) from oxidative stress damage; meanwhile, Normal-Exo showed better protective effects. Through the application of related inhibitors, we found that circulating exosomes shuttled between HUVECs via dynamin. Microarry analysis and qRT-PCR of circulating exosomes showed higher expression of miR-193a-5p in Normal-Exo. Our study showed that miR-193a-5p was the key factor on protecting endothelial cells in vitro and in vivo. Bioinformatics analyses found that activin A receptor type I (ACVR1) was the potential downstream target of miR-193a-5p, which was confirmed by ACVR1 expression and dual-luciferase report. Inhibitor of ACVR1 showed similar protective effects as miR-193a-5p. While overexpression of ACVR1 could attenuate protective effects of miR-193a-5p. To sum up, these findings suggest that circulating exosomes could shuttle between cells through dynamin and deliver miR-193a-5p to protect endothelial cells from oxidative stress damage via ACVR1.


Asunto(s)
Células Endoteliales/metabolismo , Exosomas/metabolismo , Técnicas de Transferencia de Gen , MicroARNs/metabolismo , Adulto , Animales , Transporte Biológico , Biopsia , Biología Computacional , Dinaminas/metabolismo , Exosomas/ultraestructura , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Masculino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/administración & dosificación , Persona de Mediana Edad , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Estrés Oxidativo , Plásmidos , Interferencia de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA