Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Small ; : e2403523, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966876

RESUMEN

Natural and artificial enzyme oxygen-generating systems for photodynamic therapy (PDT) are developed for tumor treatment, yet they have fallen short of the desired efficacy. Moreover, both the enzymes and photosensitizers usually need carriers for efficient delivery to tumor sites. Here, a self-cascade-enhanced multimodal tumor therapy is developed by ingeniously integrating self-cascade-enhanced PDT with Zn2+-overloading therapy. Manganese-porphyrin (TCPP-Mn) is chosen both as the photosensitizer and catalase (CAT) mimic, which can be encapsulated within glucose oxidase (GOx). Acid-responsive zeolitic imidazolate framework-8 (ZIF-8) is applied as the carrier for TCPP-Mn@GOx (T@G), attaining TCPP-Mn@GOx@ZIF-8 (T@G@Z). T@G@Z demonstrates robust anti-tumor ability as follows: upon the structural degradation of ZIF-8, GOx can mediate the oxidation of glucose and generate hydrogen peroxide (H2O2); TCPP-Mn can catalyze H2O2 into O2 for self-cascade-enhanced PDT; meanwhile, the released Zn2+ can enhance oxidative stress and induce mitochondrial dysfunction by destroying mitochondrial membrane potential; furthermore, immunotherapy can be activated to resist primary tumor and tumor metastasis. The self-cascade-enhanced T@G@Z exhibited its potential application for further tumor management.

2.
Sci Rep ; 14(1): 13906, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886545

RESUMEN

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Asunto(s)
Proteínas Cdc20 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Regulación Neoplásica de la Expresión Génica , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Ubiquitinación , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proliferación Celular/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Progresión de la Enfermedad , Movimiento Celular/genética
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657551

RESUMEN

BACKGROUND: The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS: We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS: TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS: TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas de Unión al ARN , Receptor Toll-Like 4 , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Humanos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Animales , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Línea Celular Tumoral , Progresión de la Enfermedad , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Masculino , Ubiquitinación , Ratones Desnudos , Femenino , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
4.
Biosci Rep ; 44(2)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38294290

RESUMEN

Acute myelogenous leukemia (AML) is a common malignancy and is supposed to have the ability to escape host immune surveillance. The present study aimed to identify key genes in AML that may affect tumor immunity and to provide prognosis biomarkers of AML. The Cancer Genome Atlas (TCGA) dataset was screened for transcription factors (TFs) involved in immunity and influencing survival, combining Gene Expression Omnibus (GEO) data to validate the impact on patient survival. A prognostic signature was established using four transcription factors, and these genes play an important role in the immune system, with higher regulatory T cell (Treg) scores in high-risk patients compared with the low-risk group. Analysis of individual genes showed that STAT4 and Treg are closely related, which may be due to STAT4 transcribing related genes that affect immunity. STAT4 expression was positively correlated with the proportion of abnormal cells and promoted AML recurrence as verified by AML clinical patient samples. In addition, silencing of STAT4 significantly slowed down the proliferation capacity of HL60 cells. In conclusion, these findings suggest that STAT4 may be a potential biomarker for AML prognosis. As a key gene affecting the prognosis of AML patients, STAT4 has the potential to be a candidate diagnostic and prognostic biomarker for AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Factores de Transcripción , Factores de Riesgo , Biomarcadores , Factor de Transcripción STAT4/genética
6.
Metabolism ; 148: 155690, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717724

RESUMEN

BACKGROUND: The liver regulates metabolic balance during fasting-feeding cycle. Hepatic adaptation to fasting is precisely modulated on multiple levels. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is a negative regulator of immunity that reduces several liver pathologies, but its physiological roles in hepatic metabolism are largely unknown. METHODS: TIPE2 expression was examined in mouse liver during fasting-feeding cycle. TIPE2-knockout mice, liver-specific TIPE2-knockout mice, liver-specific TIPE2-overexpressed mice were examined for fasting blood glucose and pyruvate tolerance test. Primary hepatocytes or liver tissues from these mice were evaluated for glucose production, lipid accumulation, gene expression and regulatory pathways. TIPE2 interaction with Raf-1 and TIPE2 transcription regulated by PPAR-α were examined using gene overexpression or knockdown, co-immunoprecipitation, western blot, luciferase reporter assay and DNA-protein binding assay. RESULTS: TIPE2 expression was upregulated in fasted mouse liver and starved hepatocytes, which was positively correlated with gluconeogenic genes. Liver-specific TIPE2 deficiency impaired blood glucose homeostasis and gluconeogenic capacity in mice upon fasting, while liver-specific TIPE2 overexpression elevated fasting blood glucose and hepatic gluconeogenesis in mice. In primary hepatocytes upon starvation, TIPE2 interacted with Raf-1 to accelerate its ubiquitination and degradation, resulting in ERK deactivation and FOXO1 maintenance to sustain gluconeogenesis. During prolonged fasting, hepatic TIPE2 deficiency caused aberrant activation of ERK-mTORC1 axis that increased hepatic lipid accumulation via lipogenesis. In hepatocytes upon starvation, PPAR-α bound with TIPE2 promoter and triggered its transcriptional expression. CONCLUSIONS: Hepatocyte TIPE2 is a PPAR-α-induced Raf-1 inactivator that sustains hepatic gluconeogenesis and prevents excessive hepatic lipid accumulation, playing beneficial roles in hepatocyte adaptation to fasting.

7.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685836

RESUMEN

Flexible strain sensors for multi-directional strain detection are crucial in complicated hman-computer interaction (HCI) applications. However, enhancing the anisotropy and sensitivity of the sensors for multi-directional detection in a simple and effective method remains a significant issue. Therefore, this study proposes a flexible strain sensor with anisotropy and high sensitivity based on a high-aspect-ratio V-groove array and a hybrid conductive network of iron nanowires and carbon nanotubes (Fe NWs/CNTs). The sensor exhibits significant anisotropy, with a difference in strain detection sensitivity of up to 35.92 times between two mutually perpendicular directions. Furthermore, the dynamic performance of the sensor shows a good response rate, ranging from 223 ms to 333 ms. The sensor maintains stability and consistent performance even after undergoing 1000 testing cycles. Additionally, the constructed flexible strain sensor is tested using the remote control application of a trolley, demonstrating its high potential for usage in practical HCI systems. This research offers a significant competitive advantage in the development of flexible strain sensors in the field of HCI.


Asunto(s)
Nanotubos de Carbono , Nanocables , Humanos , Anisotropía , Hierro , Computadores
8.
Epigenomics ; 15(6): 369-383, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37212125

RESUMEN

Aims: To explore the expression and methylation levels of GIPC2 in acute myeloid leukemia (AML), discuss the mechanism of GIPC2 in AML and provide new strategies for the diagnosis and treatment of AML. Methods: qPCR, western blotting, cell counting kit-8 assay, bisulfite sequencing and other experiments were used in this study. Results: The expression of GIPC2 was found to be downregulated in AML and is mainly affected by DNA promoter methylation. Decitabine can demethylate the promoter region of GIPC2, and GIPC2 expression is upregulated after demethylation. Overexpression of GIPC2 in HL-60 cells can induce apoptosis by inhibiting the PI3K/AKT pathway. Conclusion: Our findings identify that GIPC2 is associated with the PI3K/AKT signaling pathway and may represent a potential therapeutic target and biomarker for the management of AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Apoptosis/genética , Genes Supresores de Tumor , Proliferación Celular/genética , Proteínas Portadoras/genética
9.
Biosci Rep ; 43(5)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37103469

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent cancer worldwide with a poor prognosis. Unfortunately, there are few reports on effective biomarkers for HCC, identification of novel cancer targets is urgently needed. Lysosomes are central organelles for degradation and recycling processes in cells, and how lysosome-related genes are involved in the progression of hepatocellular carcinoma remains unclear. The aim of the present study was to identify key lysosome-related genes affecting HCC. In the present study, lysosome-related genes involved in HCC progression were screened based on the TCGA (The Cancer Genome Atlas) dataset. Differentially expressed genes (DEGs) were screened, and core lysosomal genes were obtained in combination with prognostic analysis and protein interaction networks. Two genes were associated with survival, and their prognostic value was validated by prognostic profiling. After mRNA expression validation and IHC, the palmitoyl protein thioesterase 1 (PPT1) gene was identified as an important lysosomal-related gene. We demonstrated that PPT1 promotes the proliferation of HCC cells in vitro. In addition, quantitative proteomics and bioinformatics analysis confirmed that PPT1 acts by affecting the metabolism, localization, and function of various macromolecular proteins. The present study reveals that PPT1 could be a promising therapeutic target for the treatment of HCC. These findings provided new insights into HCC and identified candidate gene prognosis signatures for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Pronóstico , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Biología Computacional , Lisosomas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de la Membrana/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
10.
Cell Rep ; 42(5): 112424, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086405

RESUMEN

Adipose-derived stem cells (ASCs) drive healthy visceral adipose tissue (VAT) expansion via adipocyte hyperplasia. Obesity induces ASC senescence that causes VAT dysfunction and metabolic disorders. It is challenging to restrain this process by biological intervention, as mechanisms of controlling VAT ASC senescence remain unclear. We demonstrate that a population of CX3CR1hi macrophages is maintained in mouse VAT during short-term energy surplus, which sustains ASCs by restraining their senescence, driving adaptive VAT expansion and metabolic health. Long-term overnutrition induces diminishment of CX3CR1hi macrophages in mouse VAT accompanied by ASC senescence and exhaustion, while transferring CX3CR1hi macrophages restores ASC reservoir and triggers VAT beiging to alleviate the metabolic maladaptation. Mechanistically, visceral ASCs attract macrophages via MCP-1 and shape their CX3CR1hi phenotype via exosomes; these macrophages relieve ASC senescence by promoting the arginase1-eIF5A hypusination axis. These findings identify VAT CX3CR1hi macrophages as ASC supporters and unravel their therapeutic potential for metabolic maladaptation to obesity.


Asunto(s)
Adipocitos , Grasa Intraabdominal , Animales , Ratones , Grasa Intraabdominal/metabolismo , Adipocitos/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Senescencia Celular , Tejido Adiposo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo
11.
Mar Environ Res ; 186: 105929, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863076

RESUMEN

Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom's sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton's long-term responses to the interplay of multiple environmental changes driven by climate change.


Asunto(s)
Diatomeas , Temperatura , Dióxido de Carbono , Fitoplancton/fisiología , Aclimatación
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555484

RESUMEN

p53 is the most commonly mutated gene in human cancers. Two fundamental reasons for this are its long protein isoforms protect from cancer, while its shorter C-terminal isoforms can support cancer and metastasis. Previously, we have shown that the Δ160p53 protein isoform enhances survival and the invasive character of cancer cells. Here, we identified a translation initiation site nine codons downstream of codon 160-the known initiation codon for the translation of Δ160p53-that is recognized by the translation machinery. When translation failed to initiate from AUG160 due to mutation, it initiated from AUG169 instead, producing similar levels of a similar protein, Δ169p53, which promoted cell survival as efficiently as Δ160p53 following DNA damage. Interestingly, almost all mammalian species with an orthologue to human AUG160 also possess one for AUG169, while none of the non-mammalian species lacking AUG160 have AUG169, even if that region of the p53 gene is well conserved. In view of our findings, we do not believe that Δ169p53 acts as a different p53 protein isoform; instead, we propose that the double translation initiation site strengthens the translation of these products with a critical role in cell homeostasis. Future studies will help verify if this is a more general mechanism for the expression of essential proteins in mammals.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Codón Iniciador/genética , Codón , Isoformas de Proteínas/metabolismo , Mutación , Neoplasias/genética , Biosíntesis de Proteínas
13.
Front Oncol ; 12: 950706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059677

RESUMEN

The global annual incidence of brain tumors is approximately seven out of 100,000, accounting for 2% of all tumors. The mortality rate ranks first among children under 12 and 10th among adults. Therefore, the localization and segmentation of brain tumor images constitute an active field of medical research. The traditional manual segmentation method is time-consuming, laborious, and subjective. In addition, the information provided by a single-image modality is often limited and cannot meet the needs of clinical application. Therefore, in this study, we developed a multimodality feature fusion network, MM-UNet, for brain tumor segmentation by adopting a multi-encoder and single-decoder structure. In the proposed network, each encoder independently extracts low-level features from the corresponding imaging modality, and the hybrid attention block strengthens the features. After fusion with the high-level semantic of the decoder path through skip connection, the decoder restores the pixel-level segmentation results. We evaluated the performance of the proposed model on the BraTS 2020 dataset. MM-UNet achieved the mean Dice score of 79.2% and mean Hausdorff distance of 8.466, which is a consistent performance improvement over the U-Net, Attention U-Net, and ResUNet baseline models and demonstrates the effectiveness of the proposed model.

14.
Medicine (Baltimore) ; 101(34): e30229, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36042612

RESUMEN

Chronic hepatitis B virus infection has become a major public health issue worldwide, which can lead to liver inflammation, fibrosis, and hepatocellular carcinoma. According to the inflammation activity, liver tissues can be divided into 5 grades (G0-G4). However, the mechanism of the development of liver inflammation remains unclear. In our study, expression profiling by microarray and bioinformatics technology was used to systemically identify differentially expressed genes (DEGs) between low grades (G0-G1) and high (G2-G4) grades of liver inflammation. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and protein-protein interaction network construction were performed for further identification of the key functions, pathways, and hub genes that might play important roles in the inflammation development. A total of 1982 DEGs were identified, consisting of 1220 downregulated genes and 762 upregulated genes. GO analysis revealed the DEGs were mainly enriched in GO terms that related to neutrophil activation and degranulation. MAPK1, ITGA2, CDK2, TGFB1, CDKN2A, MTOR, IL6, PCNA, OAS2, and EP300 were hub genes that had the highest centricity and might be potential markers for inflammation development. This study identified the differentially expressed genes between different grades of inflammation, which would enlighten the study that focuses on the mechanism of liver inflammation development.


Asunto(s)
Hepatitis B Crónica , Neoplasias Hepáticas , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Humanos , Inflamación/genética , Neoplasias Hepáticas/patología , Mapas de Interacción de Proteínas/genética
15.
J Biomed Mater Res A ; 110(11): 1801-1812, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35836350

RESUMEN

Peripheral nerve injures have long been a tricky problem in surgery and a feasible treatment is the transplantation of nerve guidance conduits (NGCs). This study presents a two-layer composite NGC with fair mechanical properties and good biocompatibility. The inner layer was made of degummed silk yarns/magnesium wires using braiding technology, and the outer layer was made from mixed solution of silk fibroin/chitosan (SF/CS) using freeze-drying treatment. Orthogonal experimental design was applied to rationally design the braided structural layer and obtain the optimal combination of technical process parameters. Meanwhile, the SF/CS porous outer layer was optimized from three concentrations of SF/CS solution. In vitro and in vivo study suggested that the textile-forming scaffold exhibited good biocompatibility and no toxicity. During 4 weeks' degradation, the skeleton of conduits retained its shape, and magnesium ions released from degraded magnesium wires contributed to sustainable release and uniform dispersion, proliferation and adhesion of Schwann cells, indicating potential approach in the development of NGCs.


Asunto(s)
Quitosano , Fibroínas , Quitosano/química , Fibroínas/química , Magnesio/farmacología , Regeneración Nerviosa , Porosidad , Seda/química , Andamios del Tejido/química
16.
J Healthc Eng ; 2022: 3845008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378944

RESUMEN

As a fatal lung disease, pulmonary fibrosis can cause irreversible damage to the lung, affect normal lung function, and eventually lead to death. At present, the pathogenesis of this kind of disease is not completely clear, and there is no radical cure. The main purpose of the treatment of this disease is to slow down the deterioration of pulmonary fibrosis. For this kind of disease, if it can be found early, it can be treated as soon as possible and the life of patients will be prolonged. Clinically, the diagnosis of pulmonary fibrosis depends on the relevant imaging examination, lung biopsy, lung function examination, and so on. Imaging data such as X-rays is a common examination means in clinical medicine and also plays an important role in the prediction of pulmonary fibrosis. Through X-ray, radiologists can clearly see the relevant lung lesions so as to make the relevant diagnosis. Based on the common medical image data, this paper designs related models to complete the prediction of pulmonary fibrosis. The model designed in this paper is mainly divided into two parts: first, this paper uses a neural network to complete the segmentation of lung organs; second, the neural network of image classification is designed to complete the process from lung image to disease prediction. In the design of these two parts, this paper improves on the basis of previous research methods. Through the design of a neural network with higher performance, more optimized results are achieved on the key indicators which can be applied to the real scene of pulmonary fibrosis prediction.


Asunto(s)
Fibrosis Pulmonar , Humanos , Redes Neurales de la Computación , Fibrosis Pulmonar/diagnóstico por imagen , Radiografía , Tórax , Rayos X
17.
Theranostics ; 12(5): 2080-2094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265200

RESUMEN

Rationale: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal 5-year survival less than 10%. Most patients with PDAC exhibit poor response to single-agent immunotherapy. Multimodal therapies targeting mechanisms of resistance to immunotherapy are urgently needed. We found that the class IIa histone deacetylase (HDAC) member, HDAC5 is downregulated in multiple solid tumors and its level were associated with favorable prognosis in PDAC patients. Upregulated genes in patients harboring HDAC5 deletions were enriched in adaptive immune responses and lymphocyte-mediated immunity in The Cancer Genome Atlas (TCGA) pancreatic cancer dataset. Methods: Tissue microarray of pancreatic cancer were used to analysis the correlation between HDAC5 and PD-L1. RNA-seq, transcription factor motif analysis, drug screening and molecular biology assays were performed to identify the mechanism of HDAC5's repression on PD-L1. Allografts of pancreatic cancer in mouse were applied to test the efficiency of HDAC5 inhibition and anti-PD1 co-treatment. Results: HDAC5 regulated PD-L1 expression by directly interacting with NF-κB p65; this interaction was suppressed by p65 phosphorylation at serine-311. Additionally, HDAC5 diminished p65 acetylation at lysine-310, which is essential for the transcriptional activity of p65. Importantly, we demonstrated that HDAC5 silencing or inhibition sensitized PDAC tumors to immune checkpoint blockade (ICB) therapy in syngeneic mouse model and KPC mouse derived PDAC model. Conclusion: Our findings revealed a previously unknown role of HDAC5 in regulating the NF-κB signaling pathway and antitumor immune responses. These findings provide a strong rationale for augment the antitumor effects of ICB in immunotherapy-resistant PDAC by inhibiting HDAC5.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , FN-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
18.
Eur J Neurol ; 29(1): 277-285, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546615

RESUMEN

BACKGROUND AND PURPOSE: Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is characterized by a range of cognitive impairments, especially in executive function. Our study aims to identify the abnormal regional homogeneity (ReHo) in anti-NMDAR encephalitis patients and its relationship with the executive function. METHODS: Forty patients and 42 healthy volunteers undertook an Attention Network Test and a resting-state functional magnetic resonance imaging scan. ReHo analysis was performed to investigate the neuronal activity synchronization in all subjects. Based on ReHo analysis, a multivariate pattern analysis (MVPA) was carried out to identify the brain regions that differed the most between the two groups. RESULTS: Compared to controls, the patients had higher executive control scores (p < 0.05). The patients presented reduced ReHo values in the bilateral posterior cerebellar lobe, anterior cerebellar lobe, midbrain, bilateral caudate nucleus, right superior frontal gyrus, right middle temporal gyrus, bilateral inferior parietal lobule and the left middle frontal gyrus. The ReHo values of the bilateral inferior parietal lobule in patients were found to be negatively associated with executive control scores. The classification of patients and controls using MVPA had an accuracy of 76.83%, a sensitivity of 82.50%, a specificity of 71.43% and the area under the curve was 0.83. CONCLUSIONS: Our study provides evidence of abnormal cerebral function in anti-NMDAR encephalitis patients, which may contribute to unveiling the neuropathological mechanisms of anti-NMDAR encephalitis and their influences on executive dysfunction. The MVPA classifier, based on ReHo, is helpful in identifying anti-NMDAR encephalitis patients from healthy controls.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Disfunción Cognitiva , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico/métodos , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Humanos , Imagen por Resonancia Magnética/métodos
19.
Autophagy ; 18(4): 860-876, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382907

RESUMEN

Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.


Asunto(s)
Autofagia , Enfermedad del Hígado Graso no Alcohólico , Animales , Autofagia/fisiología , Fibroblastos/metabolismo , Guanosina Trifosfato , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Sequestosoma-1/metabolismo , Sirolimus
20.
Sci Total Environ ; 818: 151782, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800448

RESUMEN

Ocean acidification (OA) represents a threat to marine organisms and ecosystems. However, OA rarely exists in isolation but occurs concomitantly with other stressors such as ultraviolet radiation (UVR), whose effects have been neglected in oceanographical observations. Here, we perform a quantitative meta-analysis based on 373 published experimental assessments from 26 studies to examine the combined effects of OA and UVR on marine primary producers. The results reveal predominantly additive stressor interactions (69-84% depending on the UV waveband), with synergistic and antagonistic interactions being rare but significantly different between micro- and macro-algae. In microalgae, variations in interaction type frequencies are related to cell volume, with antagonistic interactions accounting for a higher proportion in larger sized species. Despite additive interactions being most frequent, the small proportion of antagonistic interactions appears to have a stronger power, leading to neutral effects of OA in combination with UVR. High levels of UVR at near in situ conditions in combination with OA showed additive inhibition of calcification, but not when UVR was low. The results also reveal that the magnitude of responses is strongly dependent on experimental duration, with the negative effects of OA on calcification and pigmentation being buffered and amplified by increasing durations, respectively. Tropical primary producers were more vulnerable to OA or UVR alone compared to conspecifics from other climatic regions. Our analysis highlights that further multi-stressor long-term adaptation experiments with marine organisms of different cell volumes (especially microalgae) from different climatic regions are needed to fully disclose future impacts of OA and UVR.


Asunto(s)
Ecosistema , Agua de Mar , Organismos Acuáticos/fisiología , Concentración de Iones de Hidrógeno , Océanos y Mares , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA