Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Oncol ; 14: 1358101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690166

RESUMEN

Background: Lung cancer, characterized by its high morbidity and lethality, necessitates thorough research to enhance our understanding of its pathogenesis and discover novel therapeutic approaches. Recent studies increasingly demonstrate that lung cancer cells can modulate the tumor microenvironment, promoting tumor growth, and metastasis through the release of exosomes. Exosomes are small vesicles secreted by cells and contain a variety of bioactive molecules such as proteins, nucleic acids, and metabolites. This paper presents a comprehensive review of exosome research in lung cancer and its progress through bibliometric analysis. Methods: Publications related to exosomes in lung cancer patients were systematically searched on the Web of Science Core Collection (WoSCC) database. Bibliometric analysis was performed using VOSviwers, CiteSpace, and the R package "Bibliometrics". Publications were quantitatively analyzed using Microsoft Office Excel 2019. The language of publication was restricted to "English" and the search strategy employed TS=(exosomes or exosomes or exosomes) and TS=(lung cancer). The search period commenced on January 1, 2004, and concluded on November 12, 2023, at noon. The selected literature types included Articles and Reviews. Results: The study encompassed 1699 papers from 521 journals across 71 countries and 2105 institutions. Analysis revealed a consistent upward trend in lung cancer exosome research over the years, with a notable surge in recent times. This surge indicates a growing interest and depth of inquiry into lung cancer exosomes. Major research institutions in China and the United States, including Nanjing Medical University, Shanghai Jiao Tong University, Chinese Academy Of Sciences, and Utmd Anderson Cancer Center, emerged as crucial research hubs. The annual publication count in this field witnessed a continuous rise, particularly in recent years. Key terms such as lung cancer, non-small cell lung cancer (NSCLC), microvesicles, intercellular communication, exosomal miRNAs, and oncology dominated the research landscape. Fields like cell biology, biochemistry, biotechnology, and oncology exhibited close relation with this research. Clotilde Théry emerged as the most cited author in the field, underlining her significant contributions. These results demonstrate the broad impact of exosome research in lung cancer, with key terms covering not only disease-specific aspects such as lung cancer and NSCLC but also basic biological concepts like microvesicles and intercellular communication. Explorations into exosomal microRNAs and oncology have opened new avenues for lung cancer exosome research. In summary, lung cancer exosome research is poised to continue receiving attention, potentially leading to breakthroughs in treatment and prevention. Conclusion: Publications on lung cancer exosomes show a rising trend year by year, with China and the United States ranking first and second in terms of the number of publications. However, there is insufficient academic learning cooperation and exchanges between the two sides, and Chinese universities account for a large proportion of research institutions in this field. Jing Li is the most productive author, Clotilde Théry is the most co-cited author, and Cancers is the journal with the highest number of publications. The current focus in the field of lung cancer exosomes is on biomarkers, liquid biopsies, immunotherapy, and tumor microenvironment.

2.
Foods ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38472809

RESUMEN

Broccoli is a popular cruciferous vegetable that is well known for its abundant health-promoting biochemicals. The most important of these beneficial biochemicals are glucosinolates, including glucoraphanin and glucobrassicin. Glucoraphanin and glucobrassicin can be broken down by myrosinases into sulforaphane and indole-3-carbinol, which have been demonstrated to have potent cancer-preventive properties. Efforts to increase glucoraphanin in broccoli seedlings have long been a focus; however, increasing glucoraphanin and glucobrassicin simultaneously, as well as enhancing myrosinase activity to release more sulforaphane and indole-3-carbinol, have yet to be investigated. This study aims to investigate the impact of the combined application of tryptophan and methionine on the accumulation of sulforaphane and indole-3-carbinol, as well as their precursors. Furthermore, we also examined whether this application has any effects on seedling growth and the presence of other beneficial compounds. We found that the application of methionine and tryptophan not only increased the glucoraphanin content by 2.37 times and the glucobrassicin content by 3.01 times, but that it also caused a higher myrosinase activity, resulting in a1.99 times increase in sulforaphane and a 3.05 times increase in indole-3-carbinol. In addition, better plant growth and an increase in amino acids and flavonoids were observed in broccoli seedlings with this application. In conclusion, the simultaneous application of tryptophan and methionine to broccoli seedlings can effectively enhance their health-promoting value and growth. Our study provides a cost-effective and multi-benefit strategy for improving the health value and yield of broccoli seedlings, benefiting both consumers and farmers.

3.
Opt Express ; 32(4): 5149-5160, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439248

RESUMEN

Putrescine and cadaverine are significant volatile indicators used to assess the degree of food spoilage. Herein, we propose a micro-nano multi cavity structure for surface-enhanced Raman spectroscopy (SERS) to analyze the volatile gas putrescine and cadaverine in decomposing food. The MoS2 nano-flowers are inserted into a PVDF micro-cavity through in-situ growth, followed by vacuum evaporation technology of Ag nanoparticles to form an Ag/MoS2 nano-flower cavity/PVDF micron-bowl cavity (FIB) substrate. The micro-nano multi cavity structure can improve the capture capacity of both light and gas, thereby exhibiting high sensitivity (EF = 7.71 × 107) and excellent capability for gas detection of 2-naphthalenethiol. The SERS detections of the putrescine and cadaverine are achieved in the spoiled pork samples with the FIB substrate. Therefore, this substrate can provide an efficient, accurate, and feasible method for the specific and quantitative detection in the food safety field.

4.
J Phys Chem Lett ; 15(8): 2247-2254, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380862

RESUMEN

With the increasing emphasis on atmospheric environmental protection, it is crucial to find an efficient, direct, and accurate method to identify pollutant species in the atmosphere. To solve this problem, we designed and prepared the cascade multicavity (CMC) structure composed with silver nanoparticles (Ag NPs) as a surface-enhanced Raman scattering (SERS) substrate with favorable light transmittance and flexibility. The multicavity structure distributed on the surface introducing the homogeneous connecting holes endows the structure to more fully utilize the incident light while slowing the gas movement rate. Theoretical and experimental results have demonstrated that the Ag NPs/cascade multicavity (Ag-CMC) SERS substrate is a highly sensitive SERS substrate that can be used for in situ detection of gases under non-perpendicularly incident laser irradiation or bending of the substrate. We believe that the SERS substrate can provide a more efficient and feasible way for in situ detection of gaseous pollutants.

5.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198215

RESUMEN

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Pyrus , Factores de Transcripción , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
6.
Minerva Gastroenterol (Torino) ; 70(1): 16-21, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37526444

RESUMEN

BACKGROUND: The aim of this study is to explore the methylation of signal transduction adaptor protein 1 (STAP1) in peripheral blood T cells as a prognostic marker for hepatocellular carcinoma (HCC) ≤5 cm. METHODS: A total of 66 HCC patients who visited our hospital from November 2012 to June 2016 were retrospectively analyzed, and 55 patients who met the inclusion and exclusion criteria were studied. Clinical and pathological data were collected from all patients to detect STAP1 methylation. STAP1 methylation expression was analyzed in HCC patients ≤5 cm with different clinicopathological features; univariate and independent prognostic factors were analyzed in HCC patients; and the relationship between STAP1 methylation expression and prognosis was analyzed in HCC patients. RESULTS: There was no significant difference in STAP1 methylation expression between patients with different gender, age, history of alcoholism, history of liver cirrhosis, recurrence, 3-year OS, 5-year OS, treatment, number of tumors, tumor diameter, HBV-DNA, HBSAg, Hbe-Ag expression, and AFP level (P>0.05); however, there was significant difference in STAP1 methylation expression between patients with different survival, 3-year DFS, and 5-year DFS (P<0.05). Multivariate Cox regression analysis showed that recurrence and STAP1 methylation were independent factors for OS and DFS (P<0.05). Kaplan-Meier survival curve results showed that the median survival time, OS, and DFS of STAP1 hypermethylation expression were shorter than those of hypomethylation (P<0.05). CONCLUSIONS: STAP1 methylation in peripheral blood T cells serves as a potential prognostic marker for HCC ≤5 cm.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Estudios Retrospectivos , Supervivencia sin Enfermedad , Pronóstico , Metilación de ADN , Linfocitos T/patología , Proteínas Adaptadoras Transductoras de Señales/genética
7.
J Antimicrob Chemother ; 79(1): 27-35, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37944030

RESUMEN

BACKGROUND: The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) among humans and food-producing animals has been widely reported. However, the transmission routes and associated risk factors remain incompletely understood. METHODS: Here, we used commensal Escherichia coli bacteria strains from faeces of pigs and local citizens [HEG: high exposure group (pig breeders, butchers or restaurant chefs) and LEG: low exposure group (other occupations)] to explore the dynamics of ARB and ARG transmission between animals and humans. RESULTS: Most ARGs (96%) present in pigs were shared with humans. Carriage rates of the shared ARGs suggest two transmission patterns among pigs, the HEG and LEG: one pattern was highest in pigs, gradually decreasing in the HEG and LEG (e.g. floR and cmlA1); the other pattern was increasing from pigs to the HEG but then decreasing in the LEG (e.g. mcr-1.1). Carriage rates of the HEG were higher than in the LEG in both patterns, implicating the HEG as a crucial medium in transmitting ARB and ARGs between food-producing animals and humans. Moreover, frequent inter/intragroup transmission via strains, plasmids and/or mobile elements was evident. Carriage of mcr-1.1 on human-gut-prevalent plasmids possibly promoted its enrichment in the HEG. CONCLUSIONS: The HEG is a crucial factor in transmitting ARB and ARGs between food-producing animals and humans. Rational measures to contain the risks of occupational exposure are urgently needed to keep dissemination of antibiotic resistance in check and safeguard public health.


Asunto(s)
Genes Bacterianos , Exposición Profesional , Humanos , Porcinos , Animales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana , Escherichia coli/genética , Antibacterianos/farmacología
8.
Biomacromolecules ; 24(11): 5371-5380, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37801632

RESUMEN

Multiple myeloma (MM) is the second most common hematological malignancy. For relapsed and refractory MM, a proteasome inhibitor, carfilzomib (CFZ), has become one of the few clinical options. CFZ suffers, nevertheless, metabolic instability and poor bioavailability and may induce severe cardiovascular and renal adverse events. Here, we report that daratumumab (Dar)-decorated polypeptide micelles (Dar-PMs) mediate the targeted delivery of CFZ to CD38-positive MM, effectively boosting its anti-MM efficacy. CFZ-loaded Dar-PMs (Dar-PMs-CFZ) exhibited an average diameter of ca. 80 nm and Dar density-dependent cell endocytosis and anti-MM activity, in which over 6-fold greater inhibitory effect to LP-1 and MM.1S MM cells than nontargeted PMs-CFZ control was achieved at a Dar density of 3.2 (Dar3.2-PMs-CFZ). Interestingly, Dar3.2-PMs-CFZ markedly enhanced the growth inhibition of orthotopic LP-1 MM in mice and significantly extended the median survival time compared with PMs-CFZ and free CFZ (95 days vs 60 and 54 days, respectively). In line with its high MM targetability and anti-MM efficacy, Dar3.2-PMs-CFZ revealed little toxic effects and effectively prevented osteolytic lesions. The antibody-targeted nanodelivery of a proteasome inhibitor appears to be an appealing strategy to treat multiple myeloma.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Nanopartículas , Animales , Ratones , Inhibidores de Proteasoma/efectos adversos , Antineoplásicos/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Nanopartículas/uso terapéutico
9.
Eur J Med Chem ; 260: 115759, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659198

RESUMEN

Acute myeloid leukemia (AML) patients often experience poor therapeutic outcomes and relapse after treatment with single-target drugs, representing the urgent need of new therapies. Simultaneous inhibition of multiple oncogenic signals is a promising strategy for tumor therapy. Previous studies have reported that concomitant inhibition of Fms-like tyrosine kinase 3 (FLT3) and histone deacetylases (HDACs) can significantly improve the therapeutic efficacy for AML. Herein, a series of novel dual FLT3/HDAC inhibitors were developed through a rational structure-based drug design strategy for the first time. Among them, multiple compounds showed potent and equivalent inhibitory activities against FLT3-ITD and HDAC1, with the representative compound 63 selectively inhibiting HDAC class I (HDAC1/2/3/8) and IIB isoforms (HDAC6) related to tumorigenesis, and intensively blocking proliferation of MV4-11 cells. The antiproliferation activity was proven to depend on the dual inhibition of FLT3 and HDAC1. Mechanism assays demonstrated that 63 prohibited both FLT3 and HDAC pathways, induced apoptosis and arrested cell cycle in MV4-11 cells in a dose-dependent manner. In summary, this study validated the therapeutic potential of a kind of dual FLT3/HDAC inhibitors for AML and provided novel compounds for further biological investigation on concomitant inhibition of FLT3/HDAC pathways. Additionally, the structure-based drug design strategy described herein may provide profound enlightenment for developing superior anti-AML drugs.


Asunto(s)
Inhibidores de Histona Desacetilasas , Leucemia Mieloide Aguda , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Tirosina Quinasa 3 Similar a fms , Apoptosis , Carcinogénesis , Leucemia Mieloide Aguda/tratamiento farmacológico
10.
Eur J Med Chem ; 260: 115741, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37607438

RESUMEN

Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.


Asunto(s)
Desarrollo de Medicamentos , Neoplasias Cutáneas , Humanos , Proteolisis , Quimera Dirigida a la Proteólisis , Tecnología
11.
J Cancer Res Clin Oncol ; 149(11): 9263-9276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37199836

RESUMEN

BACKGROUND: Choroidal melanoma (CM) is an intraocular tumor that arises from melanocytes. While ubiquitin-specific protease 2 (USP2) modulates the progression of numerous diseases, its role in CM is not known. This study aimed to determine the role of USP2 in CM and elucidate its molecular mechanisms. METHODS: MTT, Transwell, and wound-scratch assays were used to investigate the function of USP2 in the proliferation and metastasis of CM. Western blotting and qRT-PCR were used to analyze the expression of USP2, Snail, and factors associated with the epithelial-mesenchymal transition (EMT). The relationship between USP2 and Snail was explored by co-immunoprecipitation and in vitro ubiquitination assays. A nude mouse model of CM was established for verifying the role of USP2 in vivo. RESULTS: USP2 overexpression promoted proliferation and metastasis, and induced the EMT in CM cells in vitro, while specific inhibition of USP2 by ML364 produced the opposite effects. ML364 also suppressed CM tumor growth in vivo. Mechanistically, USP2 is known to deubiquitinate Snail, stabilizing the latter through the removal of its K48 poly-ubiquitin chains. However, a catalytically inactive form of USP2 (C276A) had no effect on Snail ubiquitination and failed to increase Snail protein expression. The C276A mutant was also unable to promote CM cell proliferation, migration, and invasion, as well as EMT progression. Furthermore, Snail overexpression partly counteracted the effects of ML364 on proliferation and migration, while rescuing the effects of the inhibitor on the EMT. CONCLUSIONS: The findings demonstrated that USP2 modulated CM development through the stabilization of Snail and suggest that USP2 may be a useful target for the development of novel treatments for CM.


Asunto(s)
Melanoma , Animales , Ratones , Línea Celular Tumoral , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Proliferación Celular , Melanoma/genética , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia
12.
Plant Cell ; 35(8): 3127-3151, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37216674

RESUMEN

Endomembrane remodeling to form a viral replication complex (VRC) is crucial for a virus to establish infection in a host. Although the composition and function of VRCs have been intensively studied, host factors involved in the assembly of VRCs for plant RNA viruses have not been fully explored. TurboID-based proximity labeling (PL) has emerged as a robust tool for probing molecular interactions in planta. However, few studies have employed the TurboID-based PL technique for investigating plant virus replication. Here, we used Beet black scorch virus (BBSV), an endoplasmic reticulum (ER)-replicating virus, as a model and systematically investigated the composition of BBSV VRCs in Nicotiana benthamiana by fusing the TurboID enzyme to viral replication protein p23. Among the 185 identified p23-proximal proteins, the reticulon family of proteins showed high reproducibility in the mass spectrometry data sets. We focused on RETICULON-LIKE PROTEIN B2 (RTNLB2) and demonstrated its proviral functions in BBSV replication. We showed that RTNLB2 binds to p23, induces ER membrane curvature, and constricts ER tubules to facilitate the assembly of BBSV VRCs. Our comprehensive proximal interactome analysis of BBSV VRCs provides a resource for understanding plant viral replication and offers additional insights into the formation of membrane scaffolds for viral RNA synthesis.


Asunto(s)
Provirus , Piridinolcarbamato , Provirus/genética , Provirus/metabolismo , Reproducibilidad de los Resultados , Replicación Viral , Plantas/genética , Retículo Endoplásmico/metabolismo , ARN Viral/genética
13.
Front Genet ; 14: 1102171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051592

RESUMEN

MicroRNAs (miRNAs) and their target genes are aberrantly expressed in many cancers and are linked to carcinogenesis and metastasis, especially among hepatocellular carcinoma (HCC) patients. This study sought to identify new biomarkers related to HCC prognosis using small RNA sequencing from the tumor and matched normal adjacent tissue of 32 patients with HCC. Eight miRNAs were downregulated and 61 were upregulated more than twofold. Of these, five miRNAs, hsa-miR-3180, hsa-miR-5589-5p, hsa-miR-490-5p, hsa-miR-137, and hsa-miR-378i, were significantly associated with 5-year overall survival (OS) rates. Differential upregulation of hsa-miR-3180 and downregulation of hsa-miR-378i in tumor samples supported the finding that low and high concentrations of hsa-miR-3180 (p = 0.029) and hsa-miR-378i (p = 0.047), respectively, were associated with higher 5-year OS. Cox regression analyses indicated that hsa-miR-3180 (HR = 0.08; p = 0.013) and hsa-miR-378i (HR = 18.34; p = 0.045) were independent prognostic factors of poor survival. However, high hsa-miR-3180 expression obtained larger AUCs for OS and progression-free survival (PFS) and had better nomogram prediction than hsa-miR-378i. These findings indicate that hsa-miR-3180 may be associated with HCC progression and could serve as a potential biomarker for this disease.

14.
Small ; 19(25): e2207324, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932935

RESUMEN

The construction of commercial surface enhanced Raman scattering (SERS) sensors suitable for clinical applications is a pending problem, which is heavily limited by the low production of high-performance SERS bases, because they usually require fine or complicated micro/nano structures. To solve this issue, herein, a promising mass-productive 4-inch ultrasensitive SERS substrate available for early lung cancer diagnosis is proposed, which is designed with a special architecture of particle in micro-nano porous structure. Benefitting from the effective cascaded electric field coupling inside the particle-in-cavity structure and efficient Knudsen diffusion of molecules within the nanohole, the substrate exhibits remarkable SERS performance for gaseous malignancy biomarker, with the limit of detection is 0.1 ppb and the average relative standard deviation value at different scales (from cm2 to µm2 ) is ≈16.5%. In practical application, this large-sized sensor can be further divided into small ones (1 × 1 cm2 ), and more than 65 chips will be obtained from just one 4-inch wafer, greatly increasing the output of commercial SERS sensor. Further, a medical breath bag composed of this small chip is designed and studied in detail here, which suggested high-specificity recognition for lung cancer biomarker in mixed mimetic exhalation tests.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Plata/química , Neoplasias Pulmonares/diagnóstico , Biomarcadores de Tumor , Espectrometría Raman
15.
Proc Natl Acad Sci U S A ; 120(3): e2214750120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623197

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) receptor-mediated immunity includes rapid production of reactive oxygen species (ROS) and transcriptional reprogramming, which is controlled by transcription factors (TFs). Although some TFs have been reported to participate in NLR-mediated immune response, most TFs are transcriptional activators, and whether and how transcriptional repressors regulate NLR-mediated plant defenses remains largely unknown. Here, we show that the Alfin-like 7 (AL7) interacts with N NLR and functions as a transcriptional repressor. Knockdown and knockout of AL7 compromise N NLR-mediated resistance against tobacco mosaic virus, whereas AL7 overexpression enhances defense, indicating a positive regulatory role for AL7 in immunity. AL7 binds to the promoters of ROS scavenging genes to inhibit their transcription during immune responses. Mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK) directly interact with and phosphorylate AL7, which impairs the AL7-N interaction and enhances its DNA binding activity, which promotes ROS accumulation and enables immune activation. In addition to N, AL7 is also required for the function of other Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeats (TNLs) including Roq1 and RRS1-R/RPS4. Our findings reveal a hitherto unknown MAPK-AL7 module that negatively regulates ROS scavenging genes to promote NLR-mediated immunity.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Especies Reactivas de Oxígeno/metabolismo , Leucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Nucleótidos/metabolismo , Inmunidad de la Planta , Nicotiana/metabolismo
16.
Adv Sci (Weinh) ; 10(8): e2204866, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36683178

RESUMEN

Acute myeloid leukemia (AML) is the most refractory hematologic malignancy characterized by acute onset, rapid progression, and high recurrence rate. Here, codelivery of BCL2 (ABT199) and MCL1 (TW37) inhibitors using phenylboronic acid-functionalized polypeptide nanovehicles to achieve synergetic and potent treatment of AML is adopted. Leveraging the dynamic boronic ester bonds, BN coordination, and π-π stacking, the nanovehicles reveal remarkably efficient and robust drug coencapsulation. ABT199 can induce a series of pro-apoptotic reactions by promoting the dissociation of the pro-apoptotic protein Bim from BCL2, while the released Bim is often captured by MCL1 protein overexpressed in AML. TW37 has a strong inhibitory ability to MCL1, thereby can restrain the depletion of Bim protein. Dual inhibitor-loaded nanoparticles (NPAT) reveal excellent stability, acid/enzyme/H2 O2 -triggered drug release, and significant cytotoxicity toward MOLM-13-Luc and MV-411 AML cells with low half maximal inhibitory concentrations of 1.15 and 7.45 ng mL-1 , respectively. In mice bearing MOLM-13-Luc or MV-411 AML cancer, NPAT reveal significant inhibition of tumor cell infiltration in bone marrow and main organs, potent suppression of tumor growth, and remarkably elevated mouse survival. With facile construction, varying drug combination, superior safety, synergetic efficacy, the phenylboronic acid-functionalized smart nanodrugs hold remarkable potential for AML treatment.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Ratones , Animales , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácidos Borónicos/uso terapéutico
17.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203598

RESUMEN

Potassium (K) channels show the highest variability and most frequent alterations in expression in many tumor types, and modulation of K+ channels may represent a new window for cancer therapy. In previous work, we found that a terahertz (THz) field incident along the z-axis with a frequency of 51.87 THz increased the ion flux through K+ channels. In practice, it is difficult to ensure that the incident electromagnetic (EM) wave is strictly parallel to the direction of channel ion flow. In this paper, we found by changing the direction of the applied electric field that the EM wave of a specific frequency has the largest ion flux when the incident direction is along the ion flow, and the smallest ion flux when the incident direction is perpendicular to the ion flow, and that overall the EM wave of this frequency enhances the ion flow of the K+ channel. Changes in the direction of the applied field at a specific frequency affect the stability of the φ dihedral angle of the GLY77 residue and alter the ion permeation mechanism in the selectivity filter (SF) region, thus affecting the ion flux. Therefore, this frequency can be used to modulate K+ fluxes by THz waves to cause rapid apoptosis in potassium-overloaded tumor cells. This approach consequently represents an important tool for the treatment of cancer and is expected to be applied in practical therapy.


Asunto(s)
Apoptosis , Electricidad , Potasio
18.
Biomater Sci ; 10(19): 5731-5743, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36039890

RESUMEN

Indoleamine 2,3-dioxygenase (IDO), with an immunoregulatory effect related to tryptophan metabolism, has emerged as an attractive target for cancer immunotherapy. Here, a polymeric IDO inhibitor based on the poly(ethylene glycol)-b-poly(L-tyrosine-co-1-methyl-D-tryptophan) copolymer (PEG-b-P(Tyr-co-1-MT)) was developed for facile trident cancer immunotherapy. PEG-b-P(Tyr-co-1-MT) could self-assemble into nanoparticles (NPs), which were subject to enzyme degradation and capable of retarding the metabolism of L-tryptophan (TRP) to L-kynurenine (KYN) in B16F10 cancer cells. Notably, cRGD-functionalized NPs showed efficient encapsulation and an enzyme-responsive release of doxorubicin (DOX) and the BET bromodomain inhibitor JQ1. DOX in drug-loaded nanoparticles (cRGD-NPDJ) could activate immunization by inducing the discernible immunogenic cell death (ICD) of cancer cells and promoting the secretion of interferon-γ (IFN-γ), which besides activating the antitumor cellular immunity often upregulates the expression of PD-L1 and IDO to accelerate tumor progression. The encapsulated JQ1 and polymeric 1-MT in cRGD-NPDJ could reverse the expression by disrupting the binding of BET proteins with chromatin and elevating the TRP/KYN ratio. In B16F10 tumor-bearing C57BL/6 mice, cRGD-NPDJ displayed significantly increased CD8+ T cells, matured dendritic cells (mDCs), and cytokines (IFN-γ, TNF-α), as well as reduced regulatory T cells and downregulated PD-L1 expression at tumor sites, generating immune cascade reactions and a distinct improvement of the tumor microenvironment (TME), leading to significant tumor suppression and survival prolongation. The polymeric IDO inhibitor provides a facile strategy for the co-delivery of chemotherapeutics and inhibitors for efficient and safe combination cancer immunotherapy.


Asunto(s)
Quinurenina , Triptófano , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos/metabolismo , Cromatina , Doxorrubicina/farmacología , Inhibidores Enzimáticos/farmacología , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Interferón gamma , Quinurenina/metabolismo , Ratones , Ratones Endogámicos C57BL , Polietilenglicoles , Polímeros , Poliestirenos , Triptófano/química , Triptófano/metabolismo , Triptófano/farmacología , Factor de Necrosis Tumoral alfa , Tirosina
19.
Eur J Med Chem ; 241: 114601, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35872544

RESUMEN

Tropomyosin receptor kinases (TRKs) are a family of TRKA, TRKB and TRKC isoforms. It has been widely reported that TRKs are implicated in a variety of tumors with several Pan-TRK inhibitors currently being used or evaluated in clinical treatment. However, off-target adverse events frequently occur in the clinical use of Pan-TRK inhibitors, which result in poor patient compliance, even drug discontinuation. Although a subtype-selectivity TRK inhibitor may avert the potential off-target adverse events and can act as a more powerful tool compound in the biochemical studies on TRKs, the high sequence similarities of TRKs hinder the development of subtype-selectivity TRK inhibitors. For example, no selective TRKC inhibitor has been reported. Herein, a selective TRKC inhibitor (L13) was disclosed, with potent TRKC inhibitory activity and 107.5-/34.9-fold selectivity over TRKA/B (IC50 TRKA/B/C = 1400 nM, 454 nM, 13 nM, respectively). Extensive molecular dynamics simulations illustrated that key interactions of L13 with the residues and diversely conserved water molecules in the ribose regions of different TRKs may be the structural basis of selectivity. This will provide inspiring insights into the development of subtype-selectivity TRK inhibitors. Moreover, L13 could serve as a tool compound to investigate the distinct biological functions of TRKC and a starting point for further research on drugs specifically targeting TRKC.


Asunto(s)
Antineoplásicos , Receptor trkC , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA , Receptor trkB , Tropomiosina
20.
Front Oncol ; 12: 918297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875132

RESUMEN

The identification of ERBB2 (HER2) alteration in some solid tumors has become critically important due to the actionable events predictive of response to anti-HER2 therapy. However, the efficacy of ERBB2 mutated hilar cholangiocarcinoma (hCCA) against ERBB2 is rarely reported. Here we report a 76-year-old female diagnosed with hCCA complicated by liver metastases after radical resection. The next-generation sequencing assay showed that the tumor had an ERBB2 mutation. Then, the patient was treated with trastuzumab plus capecitabine. After 2 months of treatment, she had a partial response. Until now, the patient is still alive. This study has shown the potential of trastuzumab combined with capecitabine as an effective treatment for hilar cholangiocarcinoma complicated by liver metastases harboring ERBB2 alterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA