Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Neurosci ; 17(1): 28, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27230275

RESUMEN

BACKGROUND: In the current study, a transient cerebral ischemia producing selective cell death was designated a mild ischemic insult. A comparable insult in humans is a transient ischemic attack (TIA) that is associated with functional recovery but can have imaging evidence of minor ischemic damage including cerebral atrophy. A TIA also predicts a high risk for early recurrence of a stroke or TIA and thus multiple ischemic insults are not uncommon. Not well understood is what the effect of differing recovery times between mild ischemic insults has on their pathophysiology. We investigated whether cumulative brain damage would differ if recurrence of a mild ischemic insult occurred at 1 or 3 days after a first insult. RESULTS: A transient episode of middle cerebral artery occlusion via microclip was produced to elicit mild ischemic changes-predominantly scattered necrosis. This was followed 1 or 3 days later by a repeat of the same insult. Brain damage assessed histologically 7 days later was substantially greater in the 1 day recurrent group than the 3 days recurrent group, with areas of damage consisting predominantly of regions of incomplete infarction and pannecrosis in the 1 day group but predominantly regions of selective necrosis and smaller areas of incomplete infarction in the 3 days group (P < 0.05). Enhanced injury was reflected by greater number of cells staining for macrophages/microglia with ED1 and greater alterations in GFAP staining of reactive astrocytes in the 1 day than 3 days recurrent groups. The differential susceptibility to injury did not correspond to higher levels of injurious factors present at the time of the second insult such as BBB disruption or increased cytokines (tumor necrosis factor). Microglial activation, with potential for some beneficial effects, appeared greater at 3 days than 1 day. Also blood analysis demonstrated changes that included an acute increase in granulocytes and decrease in platelets at 1 day compared to 3 days post transient ischemia. CONCLUSIONS: Dynamic changes in multiple inflammatory responses likely contribute to the time dependence of the extent of damage produced by recurrent mild ischemic insults. The time of mild stroke recurrence is crucial with early recurrence producing greater damage than subacute recurrence and this supports urgency for determining and implementing optimal stroke management directly after a TIA.


Asunto(s)
Isquemia Encefálica/patología , Encéfalo/patología , Enfermedad Aguda , Animales , Astrocitos/patología , Biomarcadores/sangre , Encéfalo/inmunología , Isquemia Encefálica/sangre , Isquemia Encefálica/inmunología , Modelos Animales de Enfermedad , Inmunohistoquímica , Infarto de la Arteria Cerebral Media , Macrófagos/patología , Masculino , Microglía/patología , Necrosis/patología , Distribución Aleatoria , Ratas Wistar , Recurrencia , Índice de Severidad de la Enfermedad , Factores de Tiempo
2.
Nat Med ; 19(3): 351-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23435171

RESUMEN

Previous attempts to identify neuroprotective targets by studying the ischemic cascade and devising ways to suppress it have failed to translate to efficacious therapies for acute ischemic stroke. We hypothesized that studying the molecular determinants of endogenous neuroprotection in two well-established paradigms, the resistance of CA3 hippocampal neurons to global ischemia and the tolerance conferred by ischemic preconditioning (IPC), would reveal new neuroprotective targets. We found that the product of the tuberous sclerosis complex 1 gene (TSC1), hamartin, is selectively induced by ischemia in hippocampal CA3 neurons. In CA1 neurons, hamartin was unaffected by ischemia but was upregulated by IPC preceding ischemia, which protects the otherwise vulnerable CA1 cells. Suppression of hamartin expression with TSC1 shRNA viral vectors both in vitro and in vivo increased the vulnerability of neurons to cell death following oxygen glucose deprivation (OGD) and ischemia. In vivo, suppression of TSC1 expression increased locomotor activity and decreased habituation in a hippocampal-dependent task. Overexpression of hamartin increased resistance to OGD by inducing productive autophagy through an mTORC1-dependent mechanism.


Asunto(s)
Autofagia , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Hipoxia-Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Células Cultivadas , Hipoxia , Hipoxia-Isquemia Encefálica/metabolismo , Precondicionamiento Isquémico , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Prosencéfalo/irrigación sanguínea , Prosencéfalo/lesiones , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Ratas Wistar , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA