Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 141, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328804

RESUMEN

BACKGROUND: Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS: Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS: Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION: These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteínas de Homeodominio/metabolismo , Factor de Transcripción CDX2/metabolismo , Helicobacter pylori/metabolismo , Quinurenina/metabolismo , Mucosa Gástrica/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Triptófano/metabolismo , Neoplasias Gástricas/metabolismo , Metaplasia/metabolismo , Nucleotidiltransferasas/metabolismo , Infecciones por Helicobacter/metabolismo
2.
Bioengineered ; 13(1): 1090-1102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969357

RESUMEN

Hepatocellular carcinoma (HCC) is a kind of malignant tumor derived from hepatocytes and hepatobiliary cells, and its occurrence is prevalent worldwide. Although medical technology is developing rapidly, the therapeutic efficacy of HCC is still poor. Emerging evidence manifests that microRNAs (miRNAs) play a crucial role in various cancers and have been regarded as cancer suppressor gene. However, the regulatory mechanisms mediated by miR-647 involved in HCC remain unclear. Hence, to clarify the regulatory mechanisms mediated by miR-647 in HCC, we studied the independent effects of miR-647 and explored protein tyrosine phosphatase receptor type F (PTPRF) in the constructed HCC cell line (HCV-huh7.5). Thereafter, we used dual-luciferase gene reporting and Western blot to investigate the relationship between PTPRF and miR-647. Furthermore, we studied the mechanism of miR-647 on PTPRF in HCV-huh7.5. We found that miR-647 could not only promote the proliferation and invasion of HCV-huh7.5 cells but also facilitate cell migration, while PTPRF has the opposite effect. Besides, the results of cell function experiment implied that the overexpression of miR-647 or inhibition of PTPFRF remarkably influenced the Erk signaling pathway, which could regulate cell proliferation, migration, and invasion. In addition, the dual luciferase reporting identified PTPRF as a direct target of miR-647. We further demonstrated that miR-647 inhibitor or PTPRF knockdown administration boosted HCV-huh7.5 cell proliferation, migration, and invasion by targeting PTPRF.These findings provided clues for the mechanism of miR-647 in promoting the biology of HCV-huh7.5 cells by inhibiting the expression level of PTPRF.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Regulación hacia Arriba
3.
Biomed Res Int ; 2020: 7647181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015178

RESUMEN

BACKGROUND: CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. OBJECTIVE: The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). RESULTS: In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. CONCLUSION: The data suggested that increased CD147 level could be a biomarker of IBD in children.


Asunto(s)
Basigina/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Basigina/sangre , Niño , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino
4.
Biomed Pharmacother ; 130: 110472, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738635

RESUMEN

BACKGROUND: De novo lipogenesis (DNL) has been reported to involve in a serial types of disease. A standard triple therapy, including a PPI, omeprazole, and antibiotics (clarithromycin and amoxicillin), is widely used as the first-line regimen for helicobacter pylori (H. pylori)-infectious treatment. The objective of this study is to explore the function of a standard triple therapy on DNL. METHODS AND RESULTS: We collected the clinical sample from the patients diagnosed with or without H. pylori infection. Oil red staining, real-time PCR, western blotting (WB) and adipored experiment were performed to detect the effect of a standard triple therapy on DNL. The expression of relative key enzymes was assessed in gastric mucosa of clinical sample by IHC. Both 54 cases with H. pylori-negative and 37 cases with H. pylori-positive were enrolled in this study, and IHC assay showed that both fatty acid synthase (FASN) and ATP-citrate lyase (ACLY) expression, the critical enzymes involved in DNL, were increased in gastric mucosa of patients with H. pylori-positive compared with that with H. pylori-negative. Real-time PCR and WB analysis showed that neither clarithromycin nor amoxicillin inhibited FASN and ACLY expression, while treatment of BGC823 cells with omeprazole with 200 µM or 300 µM significantly abolished FASN and ACLY expression, leading to reduce lipid content. CONCLUSION: These findings suggested that omeprazole suppressed DNL in gastric cells, implying that targeting DNL is an alternative strategy in improving the treatment of patients with H. pylori infection.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Mucosa Gástrica/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Omeprazol/administración & dosificación , Inhibidores de la Bomba de Protones/administración & dosificación , Células Cultivadas , Niño , Células Epiteliales/metabolismo , Femenino , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori , Humanos , Masculino
5.
Nanoscale ; 11(15): 7209-7220, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30920555

RESUMEN

Currently, one of the major hurdles hindering the clinical applications of photothermal therapy (PTT) and photothermal-chemo combination therapy (PCT) is the lack of highly efficient, readily derived, and irradiation-safe photothermal agents in the biologically transparent window. Herein, we report the first design and rational construction of 0D/2D/0D sandwich heterojunctions for greatly enhanced PTT and PCT performances using 0D N-doped carbon dots and 2D MoS2 nanosheets as the assembly units. The well-matching heterojunctions enabled an additional enhancement in NIR absorbance owing to the carrier injection from carbon dots to MoS2 nanosheets, and achieved a much higher photothermal conversion efficiency (78.2%) than that of single NIR-CDs (37.6%) and MoS2 (38.3%) only. In virtue of the heterojunction-based PTT, complete tumor recession without recurrence or pulmonary metastasis was realized at an ultralow and safe laser exposure (0.2 W cm-2) below the skin tolerance irradiation threshold. Furthermore, by taking advantage of the strong X-ray attenuation and effective drug loading capacity of MoS2 nanosheets, the CT imaging-guided PCT was achieved at 0.1 W cm-2, without inducing noticeable toxic side effects. Our findings can substantiate the potential of a novel 0D/2D heterojunction for cancer theranostics.


Asunto(s)
Carbono , Disulfuros , Hipertermia Inducida , Molibdeno , Técnicas Fotoacústicas , Fotoquimioterapia , Puntos Cuánticos , Tomografía Computarizada por Rayos X , Animales , Carbono/química , Carbono/farmacología , Línea Celular Tumoral , Terapia Combinada , Disulfuros/química , Disulfuros/farmacología , Humanos , Ratones , Molibdeno/química , Molibdeno/farmacología , Metástasis de la Neoplasia , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Puntos Cuánticos/ultraestructura , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA