Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Heliyon ; 10(17): e37517, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290263

RESUMEN

Tumor recurrence and metastasis remain formidable challenges in clinical oncology. Although surgery is an effective treatment for early-stage solid tumors, residual cancer cells can lead to subsequent recurrence or metastasis. Conventional treatments for melanoma, such as anti-tumor medications and gene therapy, have distinct limitations. The rapid systemic distribution of anti-tumor drugs poses a significant challenge, often resulting in notable side effects and inadequate drug concentrations at the tumor site. Melanoma (MM), a deadly form of skin cancer, is known for its high mortality rate. In this study, we propose a novel strategy for treating MM by combining the controlled release of chemotherapeutic drugs encapsulated within Metal-Organic Frameworks (MOFs) and liposomes with gene therapy targeting Minichromosome Maintenance Proteins 4 (MCM4) using electrospinning and surface modification techniques. In vitro and in vivo results confirmed that this hierarchical membrane system can effectively deliver therapeutic MCM4 siRNA and release cisplatin to inhibit tumor growth. Furthermore, we demonstrated that MCM4 silencing promoted the sensitivity of melanoma cells to ferroptosis both in vitro and in vivo. The proposed strategy, by allowing for a controlled and sustained release of medication, could alleviate the challenges in drug delivery and aid in prevent tumor recurrence.

2.
Haematologica ; 109(9): 2955-2968, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385251

RESUMEN

Mutations in the master hematopoietic transcription factor GATA1 are often associated with functional defects in erythropoiesis and megakaryopoiesis. In this study, we identified a novel GATA1 germline mutation (c.1162delGG, p.Leu387Leufs*62) in a patient with congenital anemia and occasional thrombocytopenia. The C-terminal GATA1, a rarely studied mutational region, undergoes frameshifting translation as a consequence of this double-base deletion mutation. To investigate the specific function and pathogenic mechanism of this mutant, in vitro mutant models of stable re-expression cells were generated. The mutation was subsequently validated to cause diminished transcriptional activity of GATA1 and defective differentiation of erythroid and megakaryocytes. Using proximity labeling and mass spectrometry, we identified selective alterations in the proximal protein networks of the mutant, revealing decreased binding to a set of normal GATA1-interaction proteins, including the essential co-factor FOG1. Notably, our findings further demonstrated enhanced recruitment of the protein arginine methyltransferase PRMT6, which mediates histone modification at H3R2me2a and represses transcription activity. We also found an enhanced binding of this mutant GATA1/PRMT6 complex to the transcriptional regulatory elements of GATA1's target genes. Moreover, treatment of the PRMT6 inhibitor MS023 could partially rescue the inhibited transcriptional and impaired erythroid differentiation caused by the GATA1 mutation. Taken together, our results provide molecular insights into erythropoiesis in which mutation leads to partial loss of GATA1 function, and the role of PRMT6 and its inhibitor MS023 in congenital anemia, highlighting PRMT6 binding as a negative factor of GATA1 transcriptional activity in aberrant hematopoiesis.


Asunto(s)
Factor de Transcripción GATA1 , Mutación de Línea Germinal , Unión Proteica , Proteína-Arginina N-Metiltransferasas , Humanos , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Diferenciación Celular/genética , Eritropoyesis/genética , Masculino , Femenino , Anemia/genética
3.
Eur J Med Chem ; 264: 115975, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039788

RESUMEN

Complexes formed by combining pentacyclic triterpenes (PTs) with Aggregation-Induced Emission luminogens (AIEgens), termed pentacyclic triterpene-aggregation induced emission (PT-AIEgen) complexes, merge the chemotherapeutic properties of PTs with the photocytotoxicity of AIEgens. In this study, we synthesized derivatives by connecting three types of triphenylamine (TPA) pyridinium derivatives with three common pentacyclic triterpenes. Altering the connecting group between the electron donor TPA and the electron acceptor pyridinium resulted in increased production of reactive oxygen species (ROS) by PT-AIEgens and a red-shift in their fluorescence emission spectra. Importantly, the fluorescence emission spectra of BA-3, OA-3, and UA-3 extended into the near-infrared (NIR) range, enabling NIR-AIE imaging of the sites where the derivatives aggregated. The incorporation of the pyridinium structure improved the mitochondrial targeting of PT-AIEgens, enhancing mitochondrial pathway-mediated cell apoptosis and improving the efficiency of chemotherapy (CT) and chemo-photodynamic combined therapy (CPCT) both in vivo and in vitro. Cellular fluorescence imaging demonstrated rapid cellular uptake and mitochondrial accumulation of BA-1 (-2, -3). Cell viability experiments revealed that BA-1 (-2), OA-1 (-2), and UA-1 (-2) exhibited superior CT cytotoxicity compared to their parent drugs, with BA-1 showing the most potent inhibitory effect on HeLa cells (IC50 = 1.19 µM). Furthermore, HeLa cells treated with BA-1 (1 µM), BA-2 (1.25 µM), and BA-3 (1 µM) exhibited survival rates of 2.99 % ± 0.05 % µM, 5.92 % ± 2.04 % µM, and 2.53 % ± 0.73 % µM, respectively, under white light irradiation. Mechanistic experiments revealed that derivatives induced cell apoptosis via the mitochondrial apoptosis pathway during both CT and CPCT. Remarkably, BA-1 and BA-3 in CPCT inhibited cancer cell proliferation in an in vivo melanoma mouse xenograft model. These results collectively encourage further research of PT-AIEgens as potential anticancer agents.


Asunto(s)
Fotoquimioterapia , Triterpenos , Humanos , Ratones , Animales , Triterpenos/farmacología , Células HeLa , Fotoquimioterapia/métodos , Mitocondrias , Triterpenos Pentacíclicos/farmacología , Imagen Óptica
4.
Ann Med ; 55(1): 2231342, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37395196

RESUMEN

PURPOSE: Due to the poor and unpredictable prognosis of breast cancer (BC) patients with bone metastasis, it is necessary to find convenient and available prognostic predictors. This study aimed to recognize the clinical and prognostic factors related to clinical laboratory examination and to construct a prognostic nomogram for BC bone metastasis. METHODS: We retrospectively analyzed 32 candidate indicators from clinical features and laboratory examination data of 276 BC patients with bone metastasis. Univariate and multivariate regression analyses were performed to identify significant prognostic factors related to BC with bone metastasis. Nomogram was constructed and estimated by receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. RESULTS: Patients were randomly grouped into training (n = 197) and validation cohorts (n = 79). In training cohort, the multivariate regression analysis revealed that age, other organ metastasis sites, serum level of lactate dehydrogenase, globulin, white blood cell count, mean corpuscular volume, mean corpuscular hemoglobin, and monocyte ratio were independent prognostic factors for BC with bone metastasis. The prognostic nomogram in training cohort exhibited areas under the ROC curve (AUCs) of 0.797, 0.782, and 0.794, respectively, for predicting 1-, 3-, and 5-year overall survival. In validation cohort, the nomogram still showed acceptable discrimination ability (AUCs: 0.723, 0.742, and 0.704) and calibration. CONCLUSION: This study constructed a novel prognostic nomogram for BC patients with bone metastasis. It could serve as a potential tool of survival assessment to help individual treatment decision-making for clinicians.


Our study investigated potential prognostic value of indicators from biochemical and blood routine examination for breast cancer patients with bone metastasis.Our study established a nomogram based on the indicators from biochemical and blood routine examination, which might enhance the ability to predict prognosis of breast cancer patients with bone metastasis.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Índices de Eritrocitos , Pruebas Hematológicas , Pronóstico , Estudios Retrospectivos
5.
EClinicalMedicine ; 59: 101987, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37152366

RESUMEN

Background: Cancer-related cognitive decline is a serious problem in long-term survival but no pivotal study has investigated whether checkpoint inhibitors (ICI) may be associated with cognitive adverse events. Methods: This propensity score-matched analysis recruited non-small cell lung cancer (NSCLC) patients prescribed with or without ICI monotherapy from three Chinese tertiary hospitals. Patients were excluded from study who developed brain metastasis or had disorders severely affecting cognitive abilities. Primary outcomes were changes in neuropsychological battery test (NBT) at baseline, 6- and 12-month sessions, and any NBT score changes that exceeded 3∗SD of baseline scores would be marked as objective cognitive adverse events (CoAE). Secondary endpoint was the 20-item Perceived Cognitive Impairment (PCI) sub-scale score change in Functional Assessment of Cancer Therapy-Cognitive Function questionnaire, administered at baseline, 3-, 6-, 9-, 12-, and 15-month follow-up session. Per-protocol ICI and control arms were matched with propensity scores that incorporated baseline variables to compare both NBT and PCI assessment results. Patients participating in PCI assessments were analysed in intention-to-treat analysis. Kaplan-Meier survival curves with log-rank tests were adopted to analyse incidence of perceived cognitive decline events (PCDE). Findings: Between March 12, 2020, and March 28, 2021, 908 participants were enrolled. Compared to control, 3 of 4 subtest of NBT scores in ICI arm showed significant cognitive decline in 6- and 12-month sessions, in which Trail Making Test score change (13.56 ± 11.73) reached threshold of cognitive deficit diagnosis in the 12-month session. In 1:1 matched 292 pairs from 908 patients, PCI score changes in ICI arms were -4.26 ± 8.54 (3rd month), -4.72 ± 11.83 (6th month), -6.16 ± 15.41 (9th month), -6.07 ± 15.71 (12th month), and -7.96 ± 13.97 (15th month). The scores were significantly lower than control arm in 3-, 6-, and 12-session follow-up. The result was validated after adjusting quality of life scores and in intention-to-treat analysis. Mean PCI change exceeded 1/2 SD of baseline PCI score (5.81) in 9-, 12-, and 15-month sessions in ICI arm, but not in control arm. PCDE incidence/prevalence was significantly higher in ICI arm (incidence 26.4% vs. 5.1%, and prevalence 16.2% vs. 1.7%). Immune-related adverse events related to incidence of PCDE after adjusting for baseline variables. Interpretation: ICI monotherapy seemed to relate to higher cognitive decline represented by score changes and incidence/prevalence rates. The decline deteriorated as treatment progressed, and immune-related adverse events seemed to be associated with higher cognitive adverse events incidence in the ICI treatment. Funding: The Fellowship of China Postdoctoral Science Foundation and National Natural Science Foundation of China Youth Science Fund Project.

6.
Front Immunol ; 14: 1142862, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187745

RESUMEN

Background: Although many efforts have been devoted to identify biomarkers to predict the responsiveness of immune checkpoint inhibitors, including expression of programmed death-ligand 1 (PD-L1) and major histocompatibility complex (MHC) I, microsatellite instability (MSI), mismatch repair (MMR) defect, tumor mutation burden (TMB), tertiary lymphoid structures (TLSs), and several transcriptional signatures, the sensitivity of these indicators remains to be further improved. Materials and methods: Here, we integrated T-cell spatial distribution and intratumor transcriptional signals in predicting the response to immune checkpoint therapy in MMR-deficient tumors including tumors of Lynch syndrome (LS). Results: In both cohorts, MMR-deficient tumors displayed personalized tumor immune signatures, including inflamed, immune excluded, and immune desert, which were not only individual-specific but also organ-specific. Furthermore, the immune desert tumor exhibited a more malignant phenotype characterized by low differentiation adenocarcinoma, larger tumor sizes, and higher metastasis rate. Moreover, the tumor immune signatures associated with distinct populations of infiltrating immune cells were comparable to TLSs and more sensitive than transcriptional signature gene expression profiles (GEPs) in immunotherapy prediction. Surprisingly, the tumor immune signatures might arise from the somatic mutations. Notably, patients with MMR deficiency had benefited from the typing of immune signatures and later immune checkpoint inhibition. Conclusion: Our findings suggest that compared to PD-L1 expression, MMR, TMB, and GEPs, characterization of the tumor immune signatures in MMR-deficient tumors improves the efficiency of predicting the responsiveness of immune checkpoint inhibition.


Asunto(s)
Neoplasias Encefálicas , Síndromes Neoplásicos Hereditarios , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/genética , Síndromes Neoplásicos Hereditarios/genética
7.
Int Immunopharmacol ; 119: 110162, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075669

RESUMEN

OBJECTIVE: Immune checkpoint inhibitors are commonly used in various types of cancer, but their efficacy in ovarian cancer (OC) is limited. Thus, identifying novel immune-related therapeutic targets is crucial. Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1), a key receptor of human leukocyte antigen G (HLA-G), is involved in immune tolerance, but its role in tumor immunity remains unclear. METHODS: In this study, immunofluorescence was used to identify the location of LILRB1 in OC. The effect of LILRB1 expression on clinical outcomes in 217 patients with OC was analyzed retrospectively. A total of 585 patients with OC from the TCGA database were included to explore the relationship between LILRB1 and tumor microenvironment characteristics. RESULTS: LILRB1 was found to be expressed in tumor cells (TCs) and immune cells (ICs). High LILRB1+ ICs, but not LILRB1+ TCs, were associated with advanced FIGO stage, shorter survival outcomes, and worse adjuvant chemotherapy responses in OC patients. LILRB1 expression was also associated with high M2 macrophage infiltration, reduced activation of dendritic cells, and dysfunction of CD8+ T cells, suggesting an immunosuppressive phenotype. The combination of LILRB1+ ICs and CD8+ T cell levels could be used to distinguish patients with different clinical survival results. Moreover, LILRB1+ ICs infiltration with CD8+ T cells absence indicated inferior responsiveness to anti-PD-1/PD-L1 therapy. CONCLUSIONS: Tumor-infiltrating LILRB1+ ICs could be applied as an independent clinical prognosticator and a predictive biomarker for therapy responsiveness to OC. Further studies targeting the LILRB1 pathway should be conducted in the future.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Ováricas , Humanos , Femenino , Estudios Retrospectivos , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral , Pronóstico
8.
Biochem Biophys Res Commun ; 615: 163-171, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35665610

RESUMEN

BACKGROUNDS: Although several studies on mutant p53 reported cancer-promoting activities via "gain-of-function", the mechanism underlying these differences in function between p53 R175H, R175P, and p53 wild-type (WT) remains unclear. METHODS: Linking miniTurbo with p53 WT, R175H, and R175P, the expression of fusion and biotinylated proteins were assessed by Western blotting. The function and subcellular localization of fusion proteins were detected by apoptosis assay and immunofluorescence, respectively. Biotinylated proteins were analyzed by liquid chromatography-tandem mass spectrometry, followed by bioinformatics analysis. Small-scale pull-downs and Co-Immunoprecipitation were performed to validate the interaction between mutant or p53 WT and biotinylated proteins. RESULTS: The fusion protein's cellular localization and function were consistent with those of previous studies on the corresponding p53. Comparative profiles of R175H versus WT showed that most of the interacting proteins belonged to the intracellular organelle lumen, and the pathways involved were metabolism and genetic information processing. Comparative profiles of R175P versus WT suggested that the majority of the interacting proteins belonged to the intracellular organelle lumen and the extracellular membrane-bounded organelle, and the pathways involved were metabolism and genetic information processing pathways. The comparison between R175H and R175P revealed that most interacting proteins belonged to the organelle lumen, and pathways involved were genetic information processing pathways. Finally, the mutation of p53 significantly altered the interaction with the target proteins were confirmed. CONCLUSION: We verified the reliability of the miniTurbo system and obtained candidate targets of mutant p53, which provided new thoughts on the mechanism of mutant p53 gain-of-function and new potential targets for cancer therapy.


Asunto(s)
Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Proteínas Mutantes/metabolismo , Mutación , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
J Immunol ; 205(2): 407-413, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32522835

RESUMEN

Extracellular high-mobility group box 1 (HMGB1) is a prototypic damage-associated molecular pattern. Although a homeostatic level of extracellular HMGB1 may be beneficial for immune defense, tissue repair, and tissue regeneration, excessive HMGB1 is linked to inflammatory diseases. This prompts an intriguing question: how does a healthy body control the level of extracellular HMGB1? In this study, in the plasma of both healthy humans and healthy mice, we have identified an anti-HMGB1 IgM autoantibody that neutralizes extracellular HMGB1 via binding specifically to a 100% conserved epitope, namely HMW4 (HMGB198-112). In mice, this anti-HMW4 IgM is produced by peritoneal B-1 cells, and concomitant triggering of their BCR and TLR4 by extracellular HMGB1 stimulates the production of anti-HMW4 IgM. The ability of extracellular HMGB1 to induce its own neutralizing Ab suggests a feedback loop limiting the level of this damage-associated molecular pattern in a healthy body.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Autoanticuerpos/sangre , Subgrupos de Linfocitos B/inmunología , Epítopos/inmunología , Proteína HMGB1/inmunología , Inmunoglobulina M/sangre , Adulto , Animales , Apolipoproteínas E/genética , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos B/metabolismo , Receptor Toll-Like 4/metabolismo , Adulto Joven
10.
Biomed Opt Express ; 11(3): 1401-1416, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206418

RESUMEN

This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.

11.
Acta Biomater ; 101: 586-597, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678260

RESUMEN

Evidence that macrophages can play a role in accelerating corrosion in CoCrMo alloy in total hip replacement (THR) interfaces leads to questions regarding the underlying cellular mechanisms and immunological responses. Hence, we evaluated the role of macrophages in corrosion processes using the cell culture supernatant from different conditions and the effect of wear particles on macrophage dynamics. Monocytes were exposed to CoCrMo wear particles and their effect on macrophage differentiation was investigated by comparisons with M1 and M2 macrophage differentiation. Corrosion associated macrophages (MCA macrophages) exhibited upregulation of TNF-α, iNOS, STAT-6, and PPARG and down-regulation of CD86 and ARG, when compared to M1 and M2 macrophages. MCA cells also secreted higher levels of IL-8, IL-1ß, IL-6, IL-10, TNF-α, and IL-12p70 than M1 macrophages and/or M2 macrophages. Our findings revealed variation in macrophage phenotype (MCA) induced by CoCrMo wear particles in generating a chemical environment that induces cell-accelerated corrosion of CoCrMo alloy at THR modular interfaces. STATEMENT OF SIGNIFICANCE: Fretting wear and corrosion within the implant's modular taper junction are prominent causes of implant failure, as they promote the release of corrosion products and subsequent development of adverse local tissue reactions. Being a multifactorial process, several in vitro models have been developed to recreate the in vivo corrosion process, often summarized as mechanically-assisted crevice corrosion. Considering the excellent corrosion properties of CoCrMo alloy, the severity of chemically-generated damage observed at the modular interface has been surprising and poorly understood. The aim of the current study is to provide a better understanding of macrophages and their plasticity at the THR taper interface when they encounter wear debris from CoCrMo alloy. This is a preliminary study along the path towards determining the mechanism(s) of CAC.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Macrófagos/patología , Falla de Prótesis , Aleaciones/química , Diferenciación Celular , Polaridad Celular , Corrosión , Citocinas/metabolismo , Técnicas Electroquímicas , Cabeza Femoral/patología , Cabeza Femoral/ultraestructura , Perfilación de la Expresión Génica , Humanos , Cinética , Macrófagos/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células THP-1
12.
BMC Biotechnol ; 19(1): 74, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703569

RESUMEN

BACKGROUND: Genetic mutations cause severe human diseases, and suitable animal models to study the regulatory mechanisms involved are required. The CRISPR/Cas9 system is a powerful, highly efficient and easily manipulated tool for genetic modifications. However, utilization of CRISPR/Cas9 to introduce point mutations and the exclusion of off-target effects in mice remain challenging. TP53-R175 is one of the most frequently mutated sites in human cancers, and it plays crucial roles in human diseases, including cancers and diabetes. RESULTS: Here, we generated TRP53-R172P mutant mice (C57BL/6 J, corresponding to TP53-R175P in humans) using a single microinjection of the CRISPR/Cas9 system. The optimal parameters comprised gRNA selection, donor designation (silent mutations within gRNA region), the concentration of CRISPR components and the cellular sites of injection. TRP53-R172P conversion was genetically and functionally confirmed. Combination of TA cloning and Sanger sequencing helped identify the correctly targeted mice as well as the off-target effects in the engineered mice, which provide us a strategy to select the on-target mice without off-target effects quickly and efficiently. CONCLUSIONS: A single injection of the this optimized CRISPR/Cas9 system can be applied to introduce particular mutations in the genome of mice without off-target effects to model various human diseases.


Asunto(s)
Proteína p53 Supresora de Tumor/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Fibroblastos/metabolismo , Edición Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteína p53 Supresora de Tumor/genética
13.
Free Radic Biol Med ; 143: 494-509, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31446057

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAID) have shown promise as anticancer agents by inducing cell death apart from their antipyretic, anti-inflammatory and anti-thrombogenic effects. In our current study, we investigated the oxidative stress mediated cell death mechanism of a NSAID derivative NCX4040 (a nitric oxide (NO) releasing form of aspirin) in castration-resistant prostate cancer (CRPC) PC3 cell line. Our data revealed that NCX4040 is more potent than its parent compound aspirin or NO releasing compound DETA NONOate. NCX4040 significantly induced hydrogen peroxide formation with ensuing oxidative stress and mitochondrial depolarization resulting in lipid peroxidation, cell cycle arrest, inhibition of colony growth and induction of apoptosis in PC3 cells. Moreover, NCX4040 inhibited migration potential of PC3 cells by depolymerizing F-actin and promoting anoikis. Interestingly, elevated levels of NADPH oxidase 1 (NOX1), superoxide dismutase (SOD) 1 and 2 were observed upon NCX4040 treatment. However, down regulation of anti-apoptotic markers B-cell lymphoma 2 (Bcl2) and anti-oxidant thioredoxin reductase 1 (TXNRD1) expression were observed. In addition, NCX4040 down regulated cyclin D1 expression in PC3 cells further supporting the anticancer effect of NCX4040. Western blot analysis revealed that significant down regulation of key anti-apoptotic markers such as cellular inhibitor of apoptosis protein-1 (cIAP1), X-linked inhibitor of apoptosis (XIAP), survivin, and Cellular-Myc (c-Myc). On the other hand, NCX4040-treated cells showed upregulation of phosho histone H2AX (pH2AX), cleaved caspase3 and cleaved Poly [ADP-ribose] polymerase 1 (PARP1). Taken together, our data demonstrate that NCX4040 treatment enhances free radical formation which in turn induces oxidative stress leading to mitochondrial mediated cell death in metastatic PC3 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Aspirina/análogos & derivados , Peróxido de Hidrógeno/farmacología , Nitrocompuestos/farmacología , Estrés Oxidativo/efectos de los fármacos , Neoplasias de la Próstata/patología , Aspirina/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Oxidantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Cicatrización de Heridas
14.
Front Immunol ; 10: 96, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915064

RESUMEN

Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Interacciones Huésped-Patógeno/inmunología , Lectinas Tipo C/inmunología , Lipopolisacáridos/inmunología , Peste/inmunología , Receptores de Superficie Celular/inmunología , Yersinia pestis/fisiología , Animales , Células Presentadoras de Antígenos/inmunología , Moléculas de Adhesión Celular/genética , Línea Celular , Femenino , Células HeLa , Humanos , Lectinas Tipo C/genética , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Superficie Celular/genética , Yersinia pseudotuberculosis/fisiología , Infecciones por Yersinia pseudotuberculosis/inmunología
15.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348825

RESUMEN

Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/microbiología , Endocitosis , Interacciones Huésped-Patógeno , Lectinas Tipo C/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/microbiología , Receptores de Superficie Celular/metabolismo , Yersinia pseudotuberculosis/patogenicidad , Animales , Adhesión Bacteriana , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Yersiniosis/microbiología , Yersiniosis/patología , Yersiniosis/fisiopatología
16.
Protein Cell ; 10(2): 104-119, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29980933

RESUMEN

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFß1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFß signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Proteínas de la Membrana , FN-kappa B/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/patología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación
17.
Immunity ; 49(3): 504-514.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231984

RESUMEN

The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Colitis/inmunología , Neoplasias del Colon/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Células Supresoras de Origen Mieloide/fisiología , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Colitis/inducido químicamente , Colitis/genética , Neoplasias del Colon/genética , Disbiosis/genética , Humanos , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Supresoras de Origen Mieloide/microbiología , Regiones Promotoras Genéticas/genética
18.
J Immunol ; 200(12): 4117-4124, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29728512

RESUMEN

Linear ubiquitin chain assembly complex plays an important role in regulating TNF-α signaling activation by modifying target proteins with linear (M1-linked) ubiquitin chains. In this study, we report that the epidermis-specific knockout (KO) of RNF31, the catalytic subunit of linear ubiquitin chain assembly complex, results in an early postnatal lethality in mice due to severe skin inflammation. The inflammation was mainly triggered by TNF-α-induced apoptosis in RNF31 KO keratinocytes. Mechanistically, the deficiency of RNF31 not only impaired TNF-α-induced NF-κB activation, but also significantly increased apoptosis. Consistently, deleting TNF receptor 1 could rescue the lethality of RNF31 epidermis-specific KO mice and also the skin inflammation. Collectively, our study provides an in vivo insight that linear ubiquitination is critical for maintaining the homeostasis of keratinocytes, which will shed light on designing therapeutic compounds to treat skin inflammation.


Asunto(s)
Muerte Celular/fisiología , Epidermis/metabolismo , Homeostasis/fisiología , Queratinocitos/metabolismo , Piel/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/fisiología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología
19.
Oncotarget ; 8(34): 57782-57799, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28915711

RESUMEN

Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.

20.
Urol Oncol ; 34(11): 483.e1-483.e8, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27692835

RESUMEN

Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k2, showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K2. Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer.


Asunto(s)
Adenocarcinoma/patología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Neoplasias de la Próstata/patología , Adenocarcinoma/metabolismo , Andrógenos , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Ensayos de Selección de Medicamentos Antitumorales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neoplasias Hormono-Dependientes/metabolismo , Neoplasias Hormono-Dependientes/patología , Próstata/citología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/metabolismo , Vitamina K 2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA