Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Cancer ; 24(1): 571, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720279

RESUMEN

BACKGROUND: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS: Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS: A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION: The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.


Asunto(s)
Neoplasias Endometriales , Metabolismo de los Lípidos , Humanos , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Pronóstico , Metabolismo de los Lípidos/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica
2.
Bioact Mater ; 39: 135-146, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38783928

RESUMEN

Iron is considered as an attractive alternative material for bioresorbable scaffolds (BRS). The sirolimus eluting iron bioresorbable scaffold (IBS), developed by Biotyx Medical (Shenzhen, China), is the only iron-based BRS with an ultrathin-wall design. The study aims to investigate the long-term efficacy, safety, biocompatibility, and lumen changes during the biodegradation process of the IBS in a porcine model. A total of 90 IBSs and 70 cobalt-chromium everolimus eluting stents (EES) were randomly implanted into nonatherosclerotic coronary artery of healthy mini swine. The multimodality assessments including coronary angiography, optical coherence tomography, micro-computed tomography, magnetic resonance imaging, real-time polymerase chain reaction (PCR), and histopathological evaluations, were performed at different time points. There was no statistical difference in area stenosis between IBS group and EES group at 6 months, 1year, 2 years and 5 years. Although the scaffolded vessels narrowed at 9 months, expansive remodeling with increased mean lumen area was found at 3 and 5 years. The IBS struts remained intact at 6 months, and the corrosion was detectable at 9 months. At 5 years, the iron struts were completely degraded and absorbed in situ, without in-scaffold restenosis or thrombosis, lumen collapse, aneurysm formation, and chronic inflammation. No local or systemic toxicity and abnormal histopathologic manifestation were found in all experiments. Results from real-time PCR indicated that no sign of iron overload was reported in scaffolded segments. Therefore, the IBS shows comparable efficacy, safety, and biocompatibility with EES, and late lumen enlargement is considered as a unique feature in the IBS-implanted vessels.

3.
Front Genet ; 15: 1391842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784033

RESUMEN

Introduction: In recent years, there has been a strong association between transient receptor potential (TRP) channels and the development of various malignancies, drug resistance, and resistance to radiotherapy. Consequently, we have investigated the relationship between transient receptor potential channels and cervical cancer from multiple angles. Methods: Patients' mRNA expression profiles and gene variants were obtained from the TCGA database. Key genes in transient receptor potential channel prognosis-related genes (TRGs) were screened using the least absolute shrinkage and selection operator (LASSO) regression method, and a risk signature was constructed based on the expression of key genes. Various analyses were performed to evaluate the prognostic significance, biological functions, immune infiltration, and response to immunotherapy based on the risk signature. Results: Our research reveals substantial differences between high and low-risk groups in prognosis, tumor microenvironment, tumor mutational load, immune infiltration, and response to immunotherapy. Patients in the high-risk group exhibited poorer prognosis, lower tumor microenvironment scores and reduced response to immunotherapy while showing increased sensitivity to specific targeted drugs. In vitro experiments further illustrated that inhibiting transient receptor potential channels effectively decreased the proliferation, invasion, and migration of cervical cancer cells. Discussion: This study highlights the significant potential of transient receptor potential channels in cervical cancer, emphasizing their crucial role in prognostic prediction and personalized treatment strategies. The combination of TRP inhibitors with immunotherapy and targeted drugs may offer promise for individuals affected by cervical cancer.

4.
Int J Med Sci ; 21(7): 1227-1240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818470

RESUMEN

Uterine leiomyomas (ULM) are the most common benign tumors of the female genitalia, while uterine leiomyosarcomas (ULMS) are rare. The sarcoma is diffuse growth, prone to hematogenous metastasis, and has a poor prognosis. Due to their similar clinical symptoms and morphological features, it is sometimes difficult to distinguish them, and the final diagnosis depends on histological diagnosis. Misdiagnosis of ULM as ULMS will lead to more invasive and extensive surgery when it is not needed, while misdiagnosis of ULMS as ULM may lead to delayed treatment and poor prognosis. This review searched and studied the published articles on ULM and ULMS, and summarized the potential markers for the differential diagnosis of ULMS. These markers will facilitate differential diagnosis and personalized treatment, providing timely diagnosis and potentially better prognosis for patients.


Asunto(s)
Biomarcadores de Tumor , Leiomioma , Leiomiosarcoma , Neoplasias Uterinas , Humanos , Femenino , Leiomioma/diagnóstico , Leiomioma/patología , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/patología , Diagnóstico Diferencial , Leiomiosarcoma/diagnóstico , Leiomiosarcoma/patología , Pronóstico
5.
BMC Cancer ; 24(1): 515, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654239

RESUMEN

BACKGROUND: Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates. Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC. Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC. METHODS: By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression. We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores. RESULTS: A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), 8-oxoguanine-DNA glycosylase (OGG1), HECT and RLD domain containing E3 ubiquitin protein ligase family member 1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor 1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC) (AUC3 - year =0.728, AUC5 - year = 0.730). The nomogram based on risk score has good performance in predicting the prognosis of OC patients (AUC1 - year =0.781, AUC3 - year =0.759, AUC5 - year = 0.670). Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints, programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3 (LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, qRT-PCR confirmed RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-expressed in OC cell lines. CONCLUSION: Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/mortalidad , Pronóstico , Biomarcadores de Tumor/genética , Nomogramas , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Persona de Mediana Edad , Perfilación de la Expresión Génica , Estimación de Kaplan-Meier , Bases de Datos Genéticas , Curva ROC
6.
Environ Sci Technol ; 58(14): 6444-6454, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551318

RESUMEN

Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.


Asunto(s)
Carcinoma Hepatocelular , Contaminantes Ambientales , Neoplasias Hepáticas , Humanos , Cobalto/química , Cianuros , Peróxidos/química , Catálisis
7.
Expert Rev Clin Immunol ; 20(5): 559-569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224014

RESUMEN

OBJECTIVE: This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS: Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS: Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS: The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.


Asunto(s)
Neutrófilos , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Medios de Cultivo Condicionados/metabolismo , ARN/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral
8.
BMC Womens Health ; 24(1): 37, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218807

RESUMEN

BACKGROUND: Both mitophagy and long non-coding RNAs (lncRNAs) play crucial roles in ovarian cancer (OC). We sought to explore the characteristics of mitophagy-related gene (MRG) and mitophagy-related lncRNAs (MRL) to facilitate treatment and prognosis of OC. METHODS: The processed data were extracted from public databases (TCGA, GTEx, GEO and GeneCards). The highly synergistic lncRNA modules and MRLs were identified using weighted gene co-expression network analysis. Using LASSO Cox regression analysis, the MRL-model was first established based on TCGA and then validated with four external GEO datasets. The independent prognostic value of the MRL-model was evaluated by Multivariate Cox regression analysis. Characteristics of functional pathways, somatic mutations, immunity features, and anti-tumor therapy related to the MRL-model were evaluated using abundant algorithms, such as GSEA, ssGSEA, GSVA, maftools, CIBERSORT, xCELL, MCPcounter, ESTIMATE, TIDE, pRRophetic and so on. RESULTS: We found 52 differentially expressed MRGs and 22 prognostic MRGs in OC. Enrichment analysis revealed that MRGs were involved in mitophagy. Nine prognostic MRLs were identified and eight optimal MRLs combinations were screened to establish the MRL-model. The MRL-model stratified patients into high- and low-risk groups and remained a prognostic factor (P < 0.05) with independent value (P < 0.05) in TCGA and GEO. We observed that OC patients in the high-risk group also had the unfavorable survival in consideration of clinicopathological parameters. The Nomogram was plotted to make the prediction results more intuitive and readable. The two risk groups were enriched in discrepant functional pathways (such as Wnt signaling pathway) and immunity features. Besides, patients in the low-risk group may be more sensitive to immunotherapy (P = 0.01). Several chemotherapeutic drugs (Paclitaxel, Veliparib, Rucaparib, Axitinib, Linsitinib, Saracatinib, Motesanib, Ponatinib, Imatinib and so on) were found with variant sensitivity between the two risk groups. The established ceRNA network indicated the underlying mechanisms of MRLs. CONCLUSIONS: Our study revealed the roles of MRLs and MRL-model in expression, prognosis, chemotherapy, immunotherapy, and molecular mechanism of OC. Our findings were able to stratify OC patients with high risk, unfavorable prognosis and variant treatment sensitivity, thus improving clinical outcomes for OC patients.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Femenino , Humanos , ARN Largo no Codificante/genética , Mitofagia , Neoplasias Ováricas/genética , Paclitaxel , Axitinib , Pronóstico
9.
J Cell Mol Med ; 28(5): e18065, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116696

RESUMEN

Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.

10.
Front Cell Dev Biol ; 11: 1200197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457292

RESUMEN

Background: Cervical cancer (CC) remains one of the most common and deadly malignancies in women worldwide. FBXO5, a protein-coding gene, is highly expressed in a variety of primary tumors and promotes tumor progression, however, its role and prognostic value in CC remain largely unknown. Methods: A key differential gene, FBXO5, was screened according to WGCNA based on immunohistochemical assays of clinical samples, multiple analyses of the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, including survival analysis, tumor mutational burden, GO, KEGG, tumor immune infiltration, and chemotherapeutic drug sensitivity, to explore the expression and prognostic value of FBXO5 in CC. The migration and invasiveness of cervical cancer cells following FBXO5 knockdown and overexpression were examined using wound healing and transwell assays, and the viability of cancer cells was assessed using CCK8 and EdU assays. Results: FBXO5 was discovered to be substantially expressed in CC tissues using data from our CC cohort and the TCGA database, and a survival analysis indicated FBXO5 as a predictive factor for poor overall survival in CC patients. In vitro, CC cells were more inclined to proliferate, migrate, and invade when FBXO5 was upregulated as opposed to when it was knocked down.

11.
J Inflamm Res ; 16: 2189-2207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250106

RESUMEN

Background: Immunogenic cell death (ICD) can reshape the immune microenvironment of tumors. Driven by stressful pressure, by directly destroying tumor cells and activating the body's adaptive immunity, ICD acts as a modulator of cell death, enabling the body to generate an anti-tumor immune response that produces a more effective therapeutic effect, while tumor cells are driven to kill. Hence, this research aimed to find and evaluate ICD-related genetic signatures as cervical cancer (CC) prognostic factors. Methods: Data of CC patients from the Tumor Genome Atlas (TCGA) were used as the basis to obtain immunogenic cell-death-related prognostic genes (IPGs) in patients with CC, using the least absolute shrinkage and selection operator and Cox regression screening, and the IPGs scoring system was constructed to classify patients into high- and low-risk groups, with the Gene Expression Omnibus (GEO) dataset as the validation group. Finally, the difference analysis of single-sample gene set enrichment analysis, tumor microenvironment (TME), immune cells, tumor mutational burden, and chemotherapeutic drug sensitivity between the high-risk and low-risk groups was investigated. Results: A prognostic model with four IPGs (PDIA3, CASP8, IL1, and LY96) was developed, and it was found that the group of CC patients with a higher risk score of IPGs expression had a lower survival rate. Single and multifactor Cox regression analysis also showed that this risk score was a reliable predictor of overall survival. In comparison to the low-risk group, the high-risk group had lower TME scores and immune cell infiltration, and gene set variation analysis showed that immune-related pathways were more enriched in the high-risk group. Conclusion: A risk model constructed from four IPGs can independently predict the prognosis of CC patients and recommend more appropriate immunotherapy strategies for patients.

12.
J Ovarian Res ; 16(1): 94, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179363

RESUMEN

Exosomal miRNAs are known to play important roles in ovarian cancer and chemotherapeutic resistance. However, a systematic evaluation of characteristics of exosomal miRNAs involved in cisplatin resistance in ovarian cancer remains totally unclear. Exosomes (Exo-A2780, Exo-A2780/DDP) were extracted from cisplatin-sensitive cells (A2780) and cisplatin-resistant cells (A2780/DDP). Differential exosomal miRNA expression profiles were found by high-throughput sequencing (HTS). Target genes of the exo-miRNAs were predicted by using two online databases to increase the prediction accuracy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were utilized to find biological relationships with chemoresistance. RT‒qPCR of three exosomal miRNAs was performed, and a protein‒protein interaction (PPI) network was established to identify the hub genes. The GDSC database was used to prove the association between hsa-miR-675-3p expression and the IC50 value. An integrated miRNA-mRNA network was constructed to predict miRNA-mRNA associations. The connection between hsa-miR-675-3p and ovarian cancer was discovered by immune microenvironment analyses. The upregulated exosomal miRNAs could regulate gene targets through signalling pathways such as the Ras, PI3K/Akt, Wnt, and ErbB pathways. GO and KEGG analyses indicated that the target genes were involved in protein binding, transcription regulator activity and DNA binding. The RT‒qPCR results were consistent with the HTS data, and the results of PPI network analysis suggested that FMR1 and CD86 were the hub genes. GDSC database analysis and construction of the integrated miRNA-mRNA network suggested that hsa-miR-675-3p was associated with drug resistance. Immune microenvironment analyses showed that hsa-miR-675-3p was crucial in ovarian cancer. The study suggested that exosomal hsa-miR-675-3p is a potential target for treating ovarian cancer and overcoming cisplatin resistance.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Microambiente Tumoral , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
13.
PeerJ ; 11: e15070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101794

RESUMEN

Poly(A) binding protein interacting protein 1 (PAIP1) is a translation regulator and also regulate the decay of mRNA. PAIP1 has also been reported to be a marker of increased invasive potential of liver cancer. However, the roles and underlying molecular mechanism of PAIP1 in liver cancer is still unclear. Here, cell viability and the gene expression profile of liver cancer line HepG2 transfected with PAIP1 siRNA was compared with cells transfected with non-targeting control siRNA. The results showed that PAIP1 knockdown inhibited cell viability, and extensively affects expression of 893 genes at transcriptional level in HepG2 cells. Gene function analysis showed that a large number of PAIP1 up-regulated genes were enriched in term of DNA-dependent transcription and the down-regulated genes were enriched in some pathways including immune response and inflammatory response. qPCR confirmed that PAIP1 knockdown positively regulated the expression of selected immune and inflammatory factor genes in HepG2 cells. Expression analysis of TCGA revealed that PAIP1 had positive correlations with two immune associated genes IL1R2 and PTAFR in liver tumor tissue. Taken together, our results demonstrated that PAIP1 was not only a translation regulator, but also a transcription regulator in liver cancer. Moreover, PAIP1 could function as a regulatory factor of immune and inflammatory genes in liver cancer. Thus, our study provides important cues for further study on the regulatory mechanism of PAIP1 in liver cancer.


Asunto(s)
Neoplasias Hepáticas , Humanos , Línea Celular , Neoplasias Hepáticas/genética , ARN Mensajero/genética , ARN Interferente Pequeño , Proteínas de Unión al ARN/metabolismo , Factores de Iniciación de Péptidos/metabolismo
14.
Front Genet ; 14: 1023613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777734

RESUMEN

Cuproptosis (copper-ion-dependent cell death) is an unprogrammed cell death, and intracellular copper accumulation, causing copper homeostasis imbalance and then leading to increased intracellular toxicity, which can affect the rate of cancer cell growth and proliferation. This study aimed to create a newly cuproptosis-related lncRNA signature that can be used to predict survival and immunotherapy in patients with cervical cancer, but also to predict prognosis in patients treated with radiotherapy and may play a role in predicting radiosensitivity. First of all, we found lncRNAs associated with cuproptosis between cervical cancer tumor tissues and normal tissues. By LASSO-Cox analysis, overlapping lncRNAs were then used to construct lncRNA signatures associated with cuproptosis, which can be used to predict the prognosis of patients, especially the prognosis of radiotherapy patients, ROC curves and PCA analysis based on cuprotosis-related lncRNA signature and clinical signatures were developed and demonstrated to have good predictive potential. In addition, differences in immune cell subset infiltration and differences in immune checkpoint expression between high-risk and low-risk score groups were analyzed, and we investigated the relationship between this signature and tumor mutation burden. In summary, we constructed a lncRNA prediction signature associated with cuproptosis. This has important clinical implications, including improving the predictive value of cervical cancer patients and providing a biomarker for cervical cancer.

15.
Front Oncol ; 13: 1291559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38370348

RESUMEN

Background: Ovarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC. Methods: We acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups. Results: We got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax. Conclusion: Through the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy.

16.
BMC Womens Health ; 22(1): 451, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384588

RESUMEN

BACKGROUND: Placement of a levonorgestrel-releasing intrauterine system (LNG-IUS) is an effective treatment for adenomyosis, especially for patients who have severe dysmenorrhea symptoms but a strong desire to preserve fertility. Nonetheless, for patients with adenomyosis accompanied by an enlarged uterus, expulsion of the ring is a troublesome problem. In this study, we sewed and fixed the LNG-IUS in the uterus, which provides a good solution to this problem. METHODS: In this prospective case series approved by the Ethics Committee of Hangzhou Women's Hospital, 12 patients with adenomyosis were successfully enrolled after providing informed consent, and all patients underwent long-term postoperative follow-up. RESULTS: Twelve patients with adenomyosis underwent suture fixation with an LNG-IUS, and during the long-term postoperative follow-up, every patient experienced complete remission of their symptoms: a significant decrease in menstrual flow, relief of dysmenorrhea, and improvement in quality of life. Only one person reported expulsion a year later. CONCLUSION: In patients with adenomyosis suffering from dysmenorrhea or excessive menstrual blood loss, suture fixation of an LNG-IUS using the hysteroscopic cold knife surgery system is a minimally invasive and effective alternative treatment for adenomyosis and decreases the risk of LNG-IUS expulsion.


Asunto(s)
Adenomiosis , Dispositivos Intrauterinos Medicados , Humanos , Femenino , Adenomiosis/complicaciones , Adenomiosis/tratamiento farmacológico , Adenomiosis/cirugía , Levonorgestrel/uso terapéutico , Dismenorrea/etiología , Dismenorrea/complicaciones , Calidad de Vida , Suturas
17.
BMC Cancer ; 22(1): 1160, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357839

RESUMEN

BACKGROUND: In recent years, it has been proved that necroptosis plays an important role in the occurrence, development, invasion, metastasis and drug resistance of malignant tumors. Hence, further evaluation and targeting of necroptosis may be of clinical benefit for gynecologic cancers (GCs). METHODS: To compare consistency and difference, we explored the expression pattern and prognostic value of necroptosis-related genes (NRGs) in pan-GC analysis through Linear regression and Empirical Bayesian, Univariate Cox analysis, and public databases from TCGA and Genotype-Tissue Expression (GTEx), including CESC, OV, UCEC, and UCS. We explored the copy number variation (CNV), methylation level and enrichment pathways of NRGs in the four GCs. Based on LASSO Cox regression analysis or principal component analysis, we established the prognostic NRG-signature or necroptosis-score for the four GCs. In addition, we predicted and compared functional pathways, tumor mutational burden (TMB), somatic mutation features, immunity status, immunotherapy, chemotherapeutic drug sensitivity of the NRG-signature based on NRGs. We also examined the expression level of several NRGs in OV samples that we collected using Quantitative Real-time PCR. RESULTS: We confirmed the presence of NRGs in expression, prognosis, CNV, and methylation for four GCs, thus comparing the consistency and difference among the four GCs. The prognosis and independent prognostic value of the risk signatures based on NRGs were determined. Through the results of subclass mapping, we found that GC patients with lower risk score may be more sensitive to PDL1 response and more sensitive to immune checkpoint blockade therapy. Drug susceptibility analysis showed that, 51, 45, 64, and 29 drugs with differences between risk groups were yielded in CESC, OV, UCEC, and UCS respectively. For OV, the expression differences of several NRGs in the tissues we collected were similar to that in TCGA. CONCLUSION: Our comprehensive analysis of NRGs and NRG-signature demonstrated their similarity and difference, as well as their potential roles in prognosis and could guide therapeutic strategies, thus improving the outcome of GC patients.


Asunto(s)
Neoplasias de los Genitales Femeninos , Necroptosis , Humanos , Femenino , Necroptosis/genética , Variaciones en el Número de Copia de ADN , Teorema de Bayes , Pronóstico , Neoplasias de los Genitales Femeninos/genética
18.
J Immunol Res ; 2022: 5239006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213325

RESUMEN

Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multidomain protein, which has gained attention recently due to its positive regulation in several cancer progression and metastatic spread. However, the specific contribution of SND1 glycosylation in glioma remains uncertain. In the current study, we confirmed that SND1 was highly expressed in human glioma. Using site-directed mutagenesis, we created four predicted N-glycosylation site mutants for SND1 and provided the first evidence that SND1 undergoes N-glycosylation on its Asn50, Asn168, Asn283, and Asn416 residues in human glioma U87 cells. In addition, we found that removing the N-glycans on the Asn50 site destabilized SND1 and led to its endoplasmic reticulum-associated degradation. Furthermore, destabilized SND1 inhibits the glioma cell proliferation and metastasis. Collectively, our results reveal that N-glycosylation at Asn50 is essential for SND1 folding and trafficking, thus essential for the glioma process, providing new insights for SND1 as a potential disease biomarker for glioma.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Glioma , Biomarcadores/metabolismo , Proliferación Celular , Endonucleasas/genética , Endonucleasas/metabolismo , Glioma/metabolismo , Glicosilación , Humanos , Nucleasa Microcócica/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
19.
Front Oncol ; 12: 948169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957895

RESUMEN

Backgrounds: Pyroptosis, a newly pattern of specific programmed cell death, has been reported to participate in several cancers. However, the value of pyroptosis in breast cancer (BRCA) is still not clear. Methods: Herein, we analyzed the data of BRCA from both The Cancer Genome Atlas (TCGA) and GSEA MSigDB database. Based on the obtained pyroptosis-related genes (PRGs), we searched the interactions by STRING. After that, we performed clustering analysis by ConsensusClusterPlus. The PRGs with significant prognostic value were then screened through univariate cox regression and further evaluate by constructing a risk model by least absolute shrinkage and selection operator (LASSO) Cox regression. The immune and sensitivity to drugs were also predicted by comprehensive algorithms. Finally, real-time quantitative PCR (qPCR) was performed on two of the screened signature PRGs. Results: A total of 49 PRGs were obtained from public database and 35 of them were significantly differentially expressed genes (DEGs). Cluster analysis was then performed to explore the relationship between DEGs with overall survival. After that, 6 optimal PRGs (GSDMC, IL-18, CHMP3, TP63, GZMB and CHMP6) were screened out to construct a prognostic signature, which divide BRCA patients into two risk groups. Risk scores were then confirmed to be independent prognostic factors in BRCA. Functional enrichment analyses showed that the signature were obviously associated with tumor-related and immune-associated pathways. 79 microenvironmental cells and 11 immune checkpoint genes were found disparate in two groups. Besides, tumor immune dysfunction and exclusion (TIDE) scores revealed that patients with higher risk scores are more sensitive to immune checkpoint blockade treatment. Patients in the low-risk group were more sensitive to Cytarabine, Docetaxel, Gefitinib, Paclitaxel, and Vinblastine. Inversely, patients in the high-risk group were more sensitive to Lapatinib. Finally, we found that, CHMP3 were down-regulated in both BRCA tissues and cell lines, while IL-18 were up-regulated. Conclusion: PRGs play important roles in BRCA. Our study fills the gaps of 6 selected PRGs in BRCA, which were worthy for the further study as predict potential biomarkers and therapeutic targets.

20.
J Oncol ; 2022: 6228846, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656337

RESUMEN

Background: Ovarian cancer (OC) is the leading cause of gynecologic malignant tumors. The role of necroptosis-related lncRNAs (NRLs) in OC remains unclear. This study aims to explore the association between NRLs and prognosis in OC patients. Methods: The Cancer Genome Atlas (TCGA) and GTEx datasets were used to obtain OC's data. A NRLs signature associated with overall survival (OS) was constructed by Cox-LASSO regression analysis in training cohort for calculating risk score and then validated in testing cohort. Subsequently, the area under the curve (AUC) and Kaplan-Meier survival analysis were used to evaluate the predictive accuracy of the risk score. Finally, the immune infiltration and functional enrichment were compared between different risk groups. Results: A 8-NRLs signature including AC245128.3, AL355488.1, AC092794.1, AC068888.2, AL590652.1, AC008982.2, FOXP4-AS1, and Z94721.1 was identified to assess the OS of OC. Kaplan-Meier survival analysis, AUC value, and Cox regression analysis confirmed its predictive value and showed that the clinical outcomes were worse for high-risk patients. There were also differences in immunological functioning and immune pathways between the high-risk and low-risk groups. Conclusions: The signature based on eight NRLs has significant values in predicting prognostic prediction in OC, as well as providing a new sight for targeted therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA