Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Viruses ; 15(7)2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37515122

RESUMEN

As one of the most important avian immunosuppressive and neoplastic diseases, Marek's disease (MD), caused by oncogenic Marek's disease virus (MDV), has caused huge economic losses worldwide over the past five decades. In recent years, MD outbreaks have occurred frequently in MD-vaccinated chicken flocks, but the key pathogenic determinants and influencing factors remain unclear. Herein, we analyzed the pathogenicity of seven newly isolated MDV strains from tumor-bearing chickens in China and found that all of them were pathogenic to chicken hosts, among which four MDV isolates, SDCW01, HNXZ05, HNSQ05 and HNSQ01, were considered to be hypervirulent MDV (HV-MDV) strains. At 73 days of the virus infection experiment, the cumulative incidences of MD were 100%, 93.3%, 90% and 100%, with mortalities of 83.3%, 73.3%, 60% and 86.7%, respectively, for the four viruses. The gross occurrences of tumors were 50%, 33.3%, 30% and 63.3%, respectively, accompanied by significant hepatosplenomegaly and serious atrophy of the immune organs. Furthermore, the immune protection effects of four commercial MD vaccines against SDCW01, CVI988, HVT, CVI988+HVT, and 814 were explored. Unexpectedly, during the 67 days of post-virus challenge, the protection indices (PIs) of these four MD vaccines were only 46.2%, 38.5%, 50%, and 28%, respectively, and the birds that received the monovalent CVI988 or HVT still developed tumors with cumulative incidences of 7.7% and 11.5%, respectively. To our knowledge, this is the first demonstration of the simultaneous comparison of the immune protection efficacy of multiple commercial MD vaccines with different vaccine strains. Our study revealed that the HV-MDV variants circulating in China could significantly break through the immune protection of the classical MD vaccines currently widely used. For future work, there is an urgent need to develop novel, more effective MD vaccines for tackling the new challenge of emerging HV-MDV strains or variants for the sustainable control of MD.


Asunto(s)
Herpesvirus Gallináceo 2 , Vacunas contra la Enfermedad de Marek , Enfermedad de Marek , Neoplasias , Animales , Pollos , Herpesvirus Gallináceo 2/genética , Vacunas contra la Enfermedad de Marek/genética
2.
Viruses ; 15(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37112797

RESUMEN

Marek's disease (MD) caused by pathogenic Marek's disease virus type 1 (MDV-1) is one of the most important neoplastic diseases of poultry. MDV-1-encoded unique Meq protein is the major oncoprotein and the availability of Meq-specific monoclonal antibodies (mAbs) is crucial for revealing MDV pathogenesis/oncogenesis. Using synthesized polypeptides from conserved hydrophilic regions of the Meq protein as immunogens, together with hybridoma technology and primary screening by cross immunofluorescence assay (IFA) on Meq-deleted MDV-1 viruses generated by CRISPR/Cas9-gene editing, a total of five positive hybridomas were generated. Four of these hybridomas, namely 2A9, 5A7, 7F9 and 8G11, were further confirmed to secrete specific antibodies against Meq as confirmed by the IFA staining of 293T cells overexpressing Meq. Confocal microscopic analysis of cells stained with these antibodies confirmed the nuclear localization of Meq in MDV-infected CEF cells and MDV-transformed MSB-1 cells. Furthermore, two mAb hybridoma clones, 2A9-B12 and 8G11-B2 derived from 2A9 and 8G11, respectively, displayed high specificity for Meq proteins of MDV-1 strains with diverse virulence. Our data presented here, using synthesized polypeptide immunization combined with cross IFA staining on CRISPR/Cas9 gene-edited viruses, has provided a new efficient approach for future generation of specific mAbs against viral proteins.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Proteínas Oncogénicas Virales , Enfermedades de las Aves de Corral , Animales , Edición Génica , Sistemas CRISPR-Cas , Anticuerpos Monoclonales/metabolismo , Herpesvirus Gallináceo 2/genética , Proteínas Oncogénicas/metabolismo , Pollos , Proteínas Oncogénicas Virales/genética
3.
Viruses ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36560601

RESUMEN

The avian immunosuppressive and neoplastic diseases caused by Marek's disease virus (MDV), avian leucosis virus (ALV), and reticuloendotheliosis virus (REV) are seriously harmful to the global poultry industry. In recent years, particularly in 2020-2022, outbreaks of such diseases in chicken flocks frequently occurred in China. Herein, we collected live diseased birds from 30 poultry farms, out of 42 farms with tumour-bearing chicken flocks distributed in central China, to investigate the current epidemiology and co-infections of these viruses. The results showed that in individual diseased birds, the positive infection rates of MDV, ALV, and REV were 69.5% (203/292), 14.4% (42/292), and 4.7% (13/277), respectively, while for the flocks, the positive infection rates were 96.7% (29/30), 36.7% (11/30), and 20% (6/30), respectively. For chicken flocks, monoinfection of MDV, ALV, or REV was 53.3% (16/30), 3.3% (1/30), and 0% (0/30), respectively, but a total of 43.3% (13/30) co-infections was observed, which includes 23.3% (7/30) of MDV+ALV, 10.0% (3/30) of MDV+REV, and 10.0% (3/30) of MDV+ALV+REV co-infections. Interestingly, no ALV+REV co-infection or REV monoinfection was observed in the selected poultry farms. Our data indicate that the prevalence of virulent MDV strains, partially accompanied with ALV and/or REV co-infections, is the main reason for current outbreaks of avian neoplastic diseases in central China, providing an important reference for the future control of disease.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Coinfección , Herpesvirus Gallináceo 2 , Enfermedad de Marek , Neoplasias , Enfermedades de las Aves de Corral , Virus de la Reticuloendoteliosis , Animales , Pollos , Coinfección/epidemiología , Coinfección/veterinaria , Coinfección/complicaciones , Leucosis Aviar/epidemiología , Neoplasias/epidemiología , Neoplasias/veterinaria , China/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Virus de la Leucosis Aviar/genética , Enfermedad de Marek/epidemiología
4.
Viruses ; 14(8)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-36016273

RESUMEN

In recent years, outbreaks of Marek's disease (MD) have been frequently reported in vaccinated chicken flocks in China. Herein, we have demonstrated that four Marek's disease virus (MDV) isolates, HN502, HN302, HN304, and HN101, are all pathogenic and oncogenic to hosts. Outstandingly, the HN302 strain induced 100% MD incidence, 54.84% mortality, and 87.10% tumor incidence, together with extensive atrophy of immune organs. Pathotyping of HN302 was performed in comparison to a standard very virulent (vv) MDV strain Md5. We found that both CVI988 and HVT vaccines significantly reduced morbidity and mortality induced by HN302 or Md5 strains, but the protection indices (PIs) provided by these two vaccines against HN302 were significantly lower (27.03%) or lower (33.33%) than that against Md5, which showed PIs of 59.89% and 54.29%, respectively. These data suggested that HN302 possesses a significant higher virulence than Md5 and at least could be designated as a vvMDV strain. Together with our previous phylogenetic analysis on MDV-1 meq genes, we have presently suggested HN302 to be a typical highly virulent MDV variant belonging to an independent Chinese branch. To our knowledge, this is the first report to provide convincible evidence to identify a pathogenic MDV variant strain with a higher virulence than Md5 in China, which may have emerged and circulating in poultry farms in China for a long time and involved in the recent MD outbreaks.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , Herpesvirus Gallináceo 2/genética , Filogenia , Virulencia
5.
Vet Microbiol ; 252: 108919, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191002

RESUMEN

Marek's disease virus serotype 1 (MDV-1) is an important oncogenic α-herpesvirus that induces immunosuppressive and rapid-onset T-cell lymphomatous disease in poultry commonly referred to as Marek's disease (MD). As an excellent biomodel for the study of virally-induced cancers in natural hosts, MDV-1 encoded microRNAs (miRNAs) have been previously demonstrated with the potential roles to act as critical regulators in virus replication, latency, pathogenesis and especially in oncogenesis. Similar to the oncogenic γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), miR-M4-5p, the cellular microRNA-155 (miR-155) ortholog encoded by MDV-1, is also involved in MD oncogenesis. In lymphoblastoid cell lines derived from MDV-induced T-cell lymphomas, miR-M4-5p has been shown to be highly expressed and participate in inducing MD lymphomagenesis by regulating multiple signal pathways. Herein we report the new identification of the host WW domain-containing oxidoreductase (WWOX) as a biological target for miR-M4-5p. Further experiments revealed that as a critical oncomiRNA, miR-M4-5p promotes the proliferations of both chicken embryo fibroblast (CEF) and MSB-1 cells via suppressing cell apoptosis by targeting WWOX, a well-known tumor suppressor. Our data presents a novel insight in elucidating the regulatory mechanisms mediated by the viral analog of miR-155 that potentially contribute to MD tumorigenesis.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/virología , MicroARNs/genética , Replicación Viral/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo , Animales , Apoptosis , Carcinogénesis , Línea Celular , Proliferación Celular , Embrión de Pollo , Fibroblastos/virología , Herpesvirus Gallináceo 2/fisiología , Transducción de Señal , Oxidorreductasa que Contiene Dominios WW/genética
6.
Front Microbiol ; 11: 596422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224130

RESUMEN

MicroRNAs (miRNAs) have been demonstrated for their involvement in virus biology and pathogenesis, including functioning as key determinants of virally-induced cancers. As an important oncogenic α-herpesvirus affecting poultry health, Marek's disease virus serotype 1 [Gallid alphaherpesvirus 2 (GaHV-2)] induces rapid-onset T-cell lymphomatous disease commonly referred to as Marek's disease (MD), an excellent biological model for the study of virally-induced cancer in the natural hosts. Previously, we have demonstrated that GaHV-2-encoded miRNAs (especially those within the Meq-cluster) have the potential to act as critical regulators of multiple processes such as virus replication, latency, pathogenesis, and/or oncogenesis. In addition to miR-M4-5p (miR-155 homolog) and miR-M3-5p, we have recently found that miR-M2-5p possibly participate in inducing MD lymphomagenesis. Here, we report the identification of two tumor suppressors, the RNA-binding protein 24 (RBM24) and myogenic differentiation 1 (MYOD1), being two biological targets for miR-M2-5p. Our experiments revealed that as a critical miRNA, miR-M2-5p promotes cell proliferation via regulating the RBM24-mediated p63 overexpression and MYOD1-mediated IGF2 signaling and suppresses apoptosis by targeting the MYOD1-mediated Caspase-3 signaling pathway. Our data present a new strategy of a single viral miRNA exerting dual role to potentially participate in the virally-induced T-cell lymphomagenesis by simultaneously promoting the cell proliferation and suppressing apoptosis.

7.
J Agric Food Chem ; 66(28): 7347-7357, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29953225

RESUMEN

Quassinoids are bitter constituents characteristic of the family Simaroubaceae. A total of 18 C20 quassinoids, including nine new quassinoid glycosides, named chuglycosides A-I (1-6 and 8-10), were identified from the samara of Ailanthus altissima (Mill.) Swingle. All of the quassinoids showed potent anti-tobacco mosaic virus (TMV) activity. A preliminary structure-anti-TMV activity relationship of quassinoids was discussed. The effects of three quassinoids, including chaparrinone (12), glaucarubinone (15), and ailanthone (16), on the accumulation of TMV coat protein (CP) were studied by western blot analysis. Ailanthone (16) was further investigated for its influence on TMV spread in the Nicotiana benthamiana plant.


Asunto(s)
Ailanthus/química , Antivirales/farmacología , Extractos Vegetales/farmacología , Cuassinas/farmacología , Virus del Mosaico del Tabaco/efectos de los fármacos , Antivirales/química , Antivirales/aislamiento & purificación , Enfermedades de las Plantas/virología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cuassinas/química , Cuassinas/aislamiento & purificación , Relación Estructura-Actividad , Nicotiana/virología , Virus del Mosaico del Tabaco/fisiología
8.
Int Immunopharmacol ; 60: 41-49, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29702282

RESUMEN

Our previous study showed that wedelolactone, isolated from Ecliptae herba, enhanced osteoblastogenesis but inhibited osteoclastogenesis through Sema3A signaling pathway. This study aims to investigate the role of other semaphorins in wedelolactone-enhanced osteoblastogenesis and -inhibited osteoclastogenesis. Wedelolactone inhibited RANKL-induced Sema4D and Sema7A production, but had no effect on RANKL-reduced Sema6D expression in osteoclastic RAW264.7 cells. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone reversed osteogenic medium(OS)-reduced Sema7A expression and OS-enhanced Sema3E mRNA expression, but no effect on OS-reduced Sema3B mRNA expression. Addition of Sema4D antibody promoted wedelolactone-reduced TRAP activity and bone resorption pit formation. Wedelolactone combined with Sema4D antibody inhibited the formation of Sema4D-Plexin B1 complex. In co-culture of BMSC with RAW264.7 cells, Sema7A antibody, similar with Sema 3A antibody, reversed wedelolactone-enhanced ALP activity and mineralization level, but promoted wedelolactone-inhibited TRAP activity. However, Sema3E and Sema3B antibodies had no effect. Further, wedelolactone enhanced the binding of Sema7A with PlexinC1 and Beta1, but addition of Sema7A antibody partially blocked this binding. Our data demonstrated that wedelolactone inhibited Sema4D production and Sema4D-PlexinB1 complex formation in RAW264.7 cells, thereafter inhibiting osteoclastogenesis. At the same time, wedelolactone enhanced osteoblastogenesis through promoting Sema7A production and Sema7A-PlexinC1-Beta1 complex formation in BMSC.


Asunto(s)
Cumarinas/farmacología , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK , Células RAW 264.7 , Semaforinas/genética , Semaforinas/metabolismo
9.
Molecules ; 23(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498687

RESUMEN

Our previous study showed that wedelolactone, a compound isolated from Ecliptae herba, has the potential to enhance osteoblastogenesis. However, the molecular mechanisms by which wedelolactone promoted osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs) remain largely unknown. In this study, treatment with wedelolactone (2 µg/mL) for 3, 6, and 9 days resulted in an increase in phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal protein kinase (JNK), and p38. Phosphorylation of mitogen-activated protein kinases (MAPKs), ERK and JNK started to increase on day 3 of treatment, and p38 phosphorylation was increased by day 6 of treatment. Expression of bone morphogenetic protein (BMP2) mRNA and phosphorylation of Smad1/5/8 was enhanced after treatment of cells with wedelolactone for 6 and 9 days. The addition of the JNK inhibitor SP600125, ERK inhibitor PD98059, and p38 inhibitor SB203580 suppressed wedelolactone-induced alkaline-phosphatase activity, bone mineralization, and osteoblastogenesis-related marker genes including Runx2, Bglap, and Sp7. Increased expression of BMP2 mRNA and Smad1/5/8 phosphorylation was blocked by SP600125 and PD98059, but not by SB203580. These results suggested that wedelolactone enhanced osteoblastogenesis through induction of JNK- and ERK-mediated BMP2 expression and Smad1/5/8 phosphorylation.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Células de la Médula Ósea/efectos de los fármacos , Cumarinas/farmacología , Eclipta/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Animales , Antracenos/farmacología , Conservadores de la Densidad Ósea/aislamiento & purificación , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Cumarinas/aislamiento & purificación , Flavonoides/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Osteoblastos/metabolismo , Extractos Vegetales/química , Cultivo Primario de Células , Piridinas/farmacología , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Ethnopharmacol ; 213: 321-327, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191397

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aconiti Sinomontani Radix is frequently used in the treatment of Bi syndrome in traditional Chinese medicine. Several reports indicate that Aconiti Sinomontani Radix has therapeutic effects for rheumatoid arthritis (RA). However, the cellular mode of action is still unclear. To investigate the effect of alkaloid extracts of Aconiti Sinomontani Radix on proliferation and migration of human synovial sarcoma SW982 cells as well as the molecular mechanism underlying. MATERIALS AND METHODS: SW982 cells were examined for proliferation by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method. Wound scratch assays were performed to assess the migrated rate of SW982 cells. Quantitative real-time PCR was used to measure the mRNA expression levels of Wnt5a, Runx2, MMP3, and Bmp2. Western blotting was used to measure the phosphorylated levels of JNK and NF-κB as well as the expression of MMP3. RESULTS: The alkaloid extract from Aconiti Sinomontani Radix (MQA) and MQB, which removed lappaconitine from MQA significantly inhibited the proliferation of SW982 in a dose-dependent manner. The proliferation inhibitory effect of MQB was more potent. Incubation with 10µg/ml MQB for 12, 24, and 36h inhibited the migration of SW982 cells by 83%, 58%, and 42%, respectively. Treatment with different concentrations of MQB for 24h inhibited mRNA expression of Wnt5a, Runx2, and MMP3, but Bmp2 mRNA expression was elevated by MQB. Further, MQB inhibited phosphorylation of JNK and NF-κB p65 as well as MMP3 expression by Western blotting analysis. CONCLUSION: The results showed that MQB inhibited proliferation and migration of SW982 cells possibly through suppressing Wnt5a-mediated JNK and NF-κB pathways. These results indicated that MQB might be an active extract of Aconiti Sinomontani Radix for targeting fibroblast-like synoviocytes (FLS) and be potential for RA therapy.


Asunto(s)
Aconitum/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Extractos Vegetales/farmacología , Sinoviocitos/citología , Sinoviocitos/efectos de los fármacos , Proteína Morfogenética Ósea 2/biosíntesis , Línea Celular , Ensayos de Migración Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 3 de la Matriz/biosíntesis , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Proteína Wnt-5a/biosíntesis
11.
Arch Virol ; 160(11): 2769-79, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26296721

RESUMEN

Rice grassy stunt virus (RGSV), a member of the genus Tenuivirus, causes serious rice disease in Southeast Asian countries. In this study, a green fluorescent protein (GFP)-based transient expression assay was conducted to show that p5, encoded on RNA5 in the viral sense, is a viral suppressor of RNA silencing (VSR). Protein-protein interactions (PPIs) between p5 and all RGSV proteins except pC1 and pC2 were investigated using Gal4-based yeast two-hybrid (Y2H) experiments. The results demonstrated that p5 interacts with itself and with p3 encoded on RNA3 in the viral sense. p5-p5 and p5-p3 interactions were detected by bimolecular fluorescence complementation (BiFC) assay, and the p5-p3 interaction was confirmed by subcellular co-localization and co-immunoprecipitation (Co-IP) assays. Using the Y2H system, we demonstrated that the p5-p3 interaction requires both the N-terminal (amino acid residues 1 to 99) and C-terminal (amino acid residues 94 to 191) domains of p5. In addition, either p5 or p3 could enhance the pathogenicity of potato virus X (PVX) in Nicotiana benthamiana plants. A much more significant enhancement of PVX pathogenicity and accumulation was observed when p5 and p3 were expressed together. Our data also showed that RGSV p3 does not function as a VSR, and it had no effect on the VSR activity of p5 or the subcellular localization pattern of p5 in plant cells from Nicotiana benthamiana.


Asunto(s)
Enfermedades de las Plantas/virología , Interferencia de ARN , Tenuivirus/genética , Tenuivirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Unión Proteica , Nicotiana/virología , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA