Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Oncol ; 14: 1376496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741782

RESUMEN

FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.

2.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38644468

RESUMEN

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Asunto(s)
Neoplasias , Humanos , Animales , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Aciltransferasas/metabolismo , Aciltransferasas/química , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo , Acilación , Lipoilación , Procesamiento Proteico-Postraduccional , Enfermedades del Sistema Inmune/enzimología , Enfermedades del Sistema Inmune/metabolismo
3.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38092000

RESUMEN

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Asunto(s)
Aciltransferasas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Ratones , Caspasa 1/metabolismo , Histidina/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipoilación , Macrófagos/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo
4.
Transl Res ; 260: 1-16, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37220836

RESUMEN

Neointimal hyperplasia is a major clinical complication of coronary artery bypass graft and percutaneous coronary intervention. Smooth muscle cells (SMCs) play a vital roles in neointimal hyperplasia development and undergo complex phenotype switching. Previous studies have linked glucose transporter member 10(Glut10) to the phenotypic transformation of SMCs. In this research, we reported that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via promotion of mtDNA demethylation in SMCs. Glut10 is significantly downregulated in both human and mouse restenotic arteries. Global Glut10 deletion or SMC-specific Glut10 ablation in the carotid artery of mice accelerated neointimal hyperplasia, while Glut10 overexpression in the carotid artery triggered the opposite effects. All of these changes were accompanied by a significant increase in vascular SMCs migration and proliferation. Mechanistically, Glut10 is expressed primarily in the mitochondria after platelet-derived growth factor-BB (PDGF-BB) treatment. Glut10 ablation induced a reduction in ascorbic acid (VitC) concentrations in mitochondria and mitochondrial DNA (mtDNA) hypermethylation by decreasing the activity and expression of the Ten-eleven translocation (TET) protein family. We also observed that Glut10 deficiency aggravated mitochondrial dysfunction and decreased the adenosinetriphosphate (ATP) content and the oxygen consumption rate, which also caused SMCs to switch their phenotype from contractile to synthetic phenotype. Furthermore, mitochondria-specific TET family inhibition partially reversed these effects. These results suggested that Glut10 helps maintain the contractile phenotype of SMCs. The Glut10-TET2/3 signaling axis can arrest neointimal hyperplasia progression by improving mitochondrial function via the promotion of mtDNA demethylation in SMCs.


Asunto(s)
ADN Mitocondrial , Neointima , Animales , Humanos , Ratones , Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Desmetilación , ADN Mitocondrial/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Mitocondrias/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patología
5.
Oxid Med Cell Longev ; 2022: 7260305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855862

RESUMEN

Despite being the gold-standard treatment for end-stage heart disease, heart transplantation is associated with acute cardiac rejection within 1 year of transplantation. The continuous application of immunosuppressants may cause side effects such as hepatic and renal toxicity, infection, and malignancy. Developing new pharmaceutical strategies to alleviate acute rejection after heart transplantation effectively and safely is of critical importance. In this study, we performed a murine model of MHC-full mismatch cardiac transplantation and showed that the combination of Rhodosin (Rho) and mycophenolate mofetil (MMF) could prevent acute rejection and oxidative stress injury and prolong the survival time of murine heart transplants. The use of Rho plus MMF in allografts improved the balance of Tregs/Teff cells, which had a protective effect on allotransplantation. We also isolated bone marrow-derived dendritic cells (BMDCs) and determined that Rho inhibited DC maturation by promoting mitochondrial fusion mainly through the mitochondrial fusion-related protein MFN1. Herein, we demonstrated that Rho, an active ingredient isolated from the plant Rhodiola rosea with antioxidant and anti-inflammatory activities, could efficiently alleviate acute rejection and significantly prolong murine heart allograft survival when used with a low dose of MMF. More importantly, we found that Rho restrained DC maturation by promoting mitochondrial fusion and decreasing reactive oxygen species (ROS) levels, which then alleviated acute rejection in murine cardiac transplantation. Interestingly, as a novel immunosuppressant, Rho has almost no side effects compared with other traditional immunosuppressants. Taken together, these results suggest that Rho has good clinical auxiliary applications as an effective immunosuppressant and antioxidant, and this study provides an efficient strategy to overcome the side effects of immunosuppressive agents that are currently used in organ transplantation.


Asunto(s)
Trasplante de Riñón , Ácido Micofenólico , Aloinjertos , Animales , Antioxidantes/farmacología , Glucósidos , Rechazo de Injerto , Supervivencia de Injerto , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Ratones , Dinámicas Mitocondriales , Ácido Micofenólico/farmacología , Ácido Micofenólico/uso terapéutico , Fenoles
6.
Food Funct ; 13(14): 7666-7683, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35735054

RESUMEN

Iron deficiency (ID) is a global nutritional deficiency that was shown to be involved in the pathogenesis of aortic aneurysm and dissection (AAD) in our previous studies. Some studies suggested that mitochondrial dynamics was involved in the apoptosis and phenotypic transformation of vascular smooth muscle cells (VSMCs). However, little is known about the role of mitochondrial dynamics in aortic medial degeneration (AMD) promoted by an iron deficient diet. The present study investigated the effect of ID on the phenotypic transformation of VSMCs, the progression of AMD, and the underlying mechanism. The expression of p-Drp1 (Ser616) and Fis1 was markedly upregulated in the aortic media of AAD patients and ApoE-/- mice with subcutaneous AngII osmotic pumps. ID facilitated the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs), which triggered excessive mitochondrial fission, induced the phenotypic transformation of VSMCs, and ultimately accelerated the progression of AMD. Furthermore, the present study indicated that an inhibitor of Drp1 could partially reverse this process. Maintaining iron balance in the human body may prevent the development of AAD.


Asunto(s)
Disección Aórtica , Deficiencias de Hierro , Disección Aórtica/metabolismo , Disección Aórtica/patología , Animales , Humanos , Hierro/metabolismo , Ratones , Dinámicas Mitocondriales , Músculo Liso Vascular , Miocitos del Músculo Liso
7.
Front Immunol ; 12: 781815, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956210

RESUMEN

MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.


Asunto(s)
Enfermedades Transmisibles/etiología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunomodulación/genética , MicroARNs/genética , Animales , Biomarcadores , Mapeo Cromosómico , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/terapia , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Susceptibilidad a Enfermedades , Hematopoyesis/genética , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Especificidad de Órganos/genética , Interferencia de ARN , Transcripción Genética
8.
Oxid Med Cell Longev ; 2021: 3119953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900084

RESUMEN

Mangiferin is a naturally occurring xanthone C-glycoside that is widely found in various plants. Previous studies have reported that mangiferin inhibits tumor cell proliferation and migration. Excessive proliferation and migration of vascular smooth muscle cells (SMCs) is associated with neointimal hyperplasia in coronary arteries. However, the role and mechanism of mangiferin action in neointimal hyperplasia is still unknown. In this study, a mouse carotid artery ligation model was established, and primary rat smooth muscle cells were isolated and used for mechanistic assays. We found that mangiferin alleviated neointimal hyperplasia, inhibited proliferation and migration of SMCs, and promoted platelets derive growth factors-BB- (PDGF-BB-) induced contractile phenotype in SMCs. Moreover, mangiferin attenuated neointimal formation by inhibiting mitochondrial fission through the AMPK/Drp1 signaling pathway. These findings suggest that mangiferin has the potential to maintain vascular homeostasis and inhibit neointimal hyperplasia.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Becaplermina/farmacología , Proliferación Celular/efectos de los fármacos , Dinaminas/metabolismo , Xantonas/farmacología , Animales , Arterias Carótidas/patología , Desdiferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Hiperplasia/metabolismo , Hiperplasia/patología , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales/efectos de los fármacos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
9.
Front Oncol ; 11: 703681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631531

RESUMEN

Cancer immunotherapy has accomplished significant progresses on treatment of various cancers in the past decade; however, recent studies revealed more and more heterogeneity in tumor microenvironment which cause unneglectable therapy resistance. A central phenomenon in tumor malignancy is metabolic dysfunctionality; it reprograms metabolic homeostasis in tumor and stromal cells thus affecting metabolic modifications on specific proteins. These posttranslational modifications include glycosylation and palmitoylation, which usually alter the protein localization, stability, and function. Many of these proteins participate in acute or chronic inflammation and play critical roles in tumorigenesis and progression. Therefore, targeting these metabolic modifications in immune checkpoints and inflammation provides an attractive therapeutic strategy for certain cancers. In this review, we summarize the recent progresses on metabolic modifications in this field, focus on the mechanisms on how glycosylation and palmitoylation regulate innate immune and inflammation, and we further discuss designing new immunotherapy targeting metabolic modifications. We aim to improve immunotherapy or targeted-therapy response and achieve more accurate individual therapy.

10.
Int Immunopharmacol ; 101(Pt B): 108218, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34673300

RESUMEN

Matrine, an alkaloid derived from traditional Chinese herbs, has been confirmed to regulate immunity and exert anti-inflammatory effects. Matrine injection has been widely used in clinic therapy for anti-tumor and anti-inflammatory diseases. Heart transplantation(HT) is the only solution for the end-stage heart failure, but it is restricted by the cardiac allograft rejection. One of the important pathophysiological processes of post-transplantation rejection is inflammatory cell infiltration. Matrine has been shown to exert a positive protective effect against oxidative stress injury and inflammation, which likely benefits allograft survival. However, it remains unclear whether matrine inhibits alloimmunity or allograft rejection. In this study, we established the heart transplantation model in mouse and extracted bone marrow-derived dendritic cells (BMDCs) to explore the function and mechanism of matrine in heart transplantation. Moreover, combination treatment with matrine and tacrolimus(FK506) had a synergistic effect in preventing acute rejection of heart transplants. Here we found that matrine can prolong the survival of post-transplant and inhibit inflammatory cell infiltration in transplanted hearts of mice. At the same time, matrine increased Treg ratio and decreased CD4+/CD8 + ratio in mice. More importantly, matrine inhibited DCs maturation in mice and reduced oxidative damage and apoptosis in allograft hearts. Furthermore, matrine also downregulated NF-κB pathway and upregulated ERK1/2 signaling pathway. Overall, our study reveals a novel immunosuppressive agent that has the potential to reduce the side effects of existing immunosuppressive agents when used in combination with them.


Asunto(s)
Alcaloides/uso terapéutico , Células Dendríticas/efectos de los fármacos , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Quinolizinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Tacrolimus/uso terapéutico , Alcaloides/administración & dosificación , Animales , Quimioterapia Combinada , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Quinolizinas/administración & dosificación , Tacrolimus/administración & dosificación , Matrinas
11.
Genomics Proteomics Bioinformatics ; 18(3): 230-240, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-33157301

RESUMEN

Scutellaria baicalensis (S. baicalensis) and Scutellaria barbata (S. barbata) are common medicinal plants of the Lamiaceae family. Both produce specific flavonoid compounds, including baicalein, scutellarein, norwogonin, and wogonin, as well as their glycosides, which exhibit antioxidant and antitumor activities. Here, we report chromosome-level genome assemblies of S. baicalensis and S. barbata with quantitative chromosomal variation (2n = 18 and 2n = 26, respectively). The divergence of S. baicalensis and S. barbata occurred far earlier than previously reported, and a whole-genome duplication (WGD) event was identified. The insertion of long terminal repeat elements after speciation might be responsible for the observed chromosomal expansion and rearrangement. Comparative genome analysis of the congeneric species revealed the species-specific evolution of chrysin and apigenin biosynthetic genes, such as the S. baicalensis-specific tandem duplication of genes encoding phenylalanine ammonia lyase and chalcone synthase, and the S. barbata-specific duplication of genes encoding 4-CoA ligase. In addition, the paralogous duplication, colinearity, and expression diversity of CYP82D subfamily members revealed the functional divergence of genes encoding flavone hydroxylase between S. baicalensis and S. barbata. Analyzing these Scutellaria genomes reveals the common and species-specific evolution of flavone biosynthetic genes. Thus, these findings would facilitate the development of molecular breeding and studies of biosynthesis and regulation of bioactive compounds.


Asunto(s)
Evolución Molecular , Flavonoides/biosíntesis , Genoma de Planta , Extractos Vegetales/análisis , Scutellaria/genética , Secuenciación Completa del Genoma , Extractos Vegetales/genética , Scutellaria/clasificación , Scutellaria/metabolismo , Scutellaria baicalensis
12.
Nucleic Acids Res ; 46(21): 11326-11339, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30304473

RESUMEN

Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.


Asunto(s)
Daño del ADN , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitinación , Adenosina Trifosfato/química , Cromatina/química , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Cadena Simple/química , Recombinación Homóloga , Microscopía Fluorescente , Mutación , Recombinación Genética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN
13.
Acta Biochim Biophys Sin (Shanghai) ; 49(8): 655-668, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541389

RESUMEN

DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.


Asunto(s)
Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Animales , Quinasas Ciclina-Dependientes/metabolismo , Fase G2 , Humanos , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Phytother Res ; 28(9): 1275-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25087616

RESUMEN

Astragalus membranaceus is one of the most widely used traditional Chinese herbal medicines. It is used as immune stimulant, tonic, antioxidant, hepatoprotectant, diuretic, antidiabetic, anticancer, and expectorant. The current paper reviews the botanical characteristics, phytochemistry, and pharmacology of Astragali Radix. Information on Astragali Radix was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Medline Plus, CNKI, and Web of Science) as well as from libraries and local books. More than 100 compounds, including flavonoids, saponins, polysaccharides, and amino acids, have so far been identified, and the various biological activities of the compounds have been reported. As an important traditional Chinese medicine, further studies on Astragali Radix can lead to the development of new drugs and therapies for various diseases. The improvement of its utilization should be studied further.


Asunto(s)
Astragalus propinquus/química , Medicamentos Herbarios Chinos/farmacología , Planta del Astrágalo/química , Medicamentos Herbarios Chinos/química , Flavonoides/química , Polisacáridos/química , Saponinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA