Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Death Discov ; 8(1): 345, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918318

RESUMEN

Exploring the functions of human-specific genes (HSGs) is challenging due to the lack of a tractable genetic model system. Testosterone is essential for maintaining human spermatogenesis and fertility, but the underlying mechanism is unclear. Here, we identified Cancer/Testis Antigen gene family 47 (CT47) as an essential regulator of human-specific spermatogenesis by stabilizing arginine methyltransferase 5 (PRMT5). A humanized mouse model revealed that CT47 functions to arrest spermatogenesis by interacting with and regulating CT47/PRMT5 accumulation in the nucleus during the leptotene/zygotene-to-pachytene transition of meiosis. We demonstrate that testosterone induces nuclear depletion of CT47/PRMT5 and rescues leptotene-arrested spermatocyte progression in humanized testes. Loss of CT47 in human embryonic stem cells (hESCs) by CRISPR/Cas9 led to an increase in haploid cells but blocked the testosterone-induced increase in haploid cells when hESCs were differentiated into haploid spermatogenic cells. Moreover, CT47 levels were decreased in nonobstructive azoospermia. Together, these results established CT47 as a crucial regulator of human spermatogenesis by preventing meiosis initiation before the testosterone surge.

2.
Dis Model Mech ; 15(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35514236

RESUMEN

Neural tube defects (NTDs) are among the common and severe birth defects with poorly understood etiology. Mutations in the Wnt co-receptor LRP6 are associated with NTDs in humans. Either gain-of-function (GOF) or loss-of-function (LOF) mutations of Lrp6 can cause NTDs in mice. NTDs in Lrp6-GOF mutants may be attributed to altered ß-catenin-independent noncanonical Wnt signaling. However, the mechanisms underlying NTDs in Lrp6-LOF mutants and the role of Lrp6-mediated canonical Wnt/ß-catenin signaling in neural tube closure remain unresolved. We previously demonstrated that ß-catenin signaling is required for posterior neuropore (PNP) closure. In the current study, conditional ablation of Lrp6 in dorsal PNP caused spinal NTDs with diminished activities of Wnt/ß-catenin signaling and its downstream target gene Pax3, which is required for PNP closure. ß-catenin-GOF rescued NTDs in Lrp6-LOF mutants. Moreover, maternal supplementation of a Wnt/ß-catenin signaling agonist reduced the frequency and severity of spinal NTDs in Lrp6-LOF mutants by restoring Pax3 expression. Together, these results demonstrate the essential role of Lrp6-mediated Wnt/ß-catenin signaling in PNP closure, which could also provide a therapeutic target for NTD intervention through manipulation of canonical Wnt/ß-catenin signaling activities.


Asunto(s)
Defectos del Tubo Neural , Vía de Señalización Wnt , Animales , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Tubo Neural/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
3.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055125

RESUMEN

PTH induces phosphorylation of the transcriptional coregulator NACA on serine 99 through Gαs and PKA. This leads to nuclear translocation of NACA and expression of the target gene Lrp6, encoding a coreceptor of the PTH receptor (PTH1R) necessary for full anabolic response to intermittent PTH (iPTH) treatment. We hypothesized that maintaining enough functional PTH1R/LRP6 coreceptor complexes at the plasma membrane through NACA-dependent Lrp6 transcription is important to ensure maximal response to iPTH. To test this model, we generated compound heterozygous mice in which one allele each of Naca and Lrp6 is inactivated in osteoblasts and osteocytes, using a knock-in strain with a Naca99 Ser-to-Ala mutation and an Lrp6 floxed strain (test genotype: Naca99S/A; Lrp6+/fl;OCN-Cre). Four-month-old females were injected with vehicle or 100 µg/kg PTH(1-34) once daily, 5 days a week for 4 weeks. Control mice showed significant increases in vertebral trabecular bone mass and biomechanical properties that were abolished in compound heterozygotes. Lrp6 expression was reduced in compound heterozygotes vs. controls. The iPTH treatment increased Alpl and Col1a1 mRNA levels in the control but not in the test group. These results confirm that NACA and LRP6 form part of a common genetic pathway that is necessary for the full anabolic effect of iPTH.


Asunto(s)
Anabolizantes/administración & dosificación , Células Madre Embrionarias/citología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Chaperonas Moleculares/genética , Hormona Paratiroidea/administración & dosificación , Anabolizantes/farmacología , Animales , Línea Celular , Membrana Celular/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Ratones , Chaperonas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Osteoblastos/metabolismo , Osteocitos/metabolismo , Hormona Paratiroidea/farmacología , Fosforilación , Transducción de Señal/efectos de los fármacos , Microtomografía por Rayos X
4.
Birth Defects Res ; 112(19): 1660-1698, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125192

RESUMEN

Orofacial clefts (OFCs) are among the most common birth defects and impart a significant burden on afflicted individuals and their families. It is increasingly understood that many nonsyndromic OFCs are a consequence of extrinsic factors, genetic susceptibilities, and interactions of the two. Therefore, understanding the environmental mechanisms of OFCs is important in the prevention of future cases. This review examines the molecular mechanisms associated with environmental factors that either protect against or increase the risk of OFCs. We focus on essential metabolic pathways, environmental signaling mechanisms, detoxification pathways, behavioral risk factors, and biological hazards that may disrupt orofacial development.


Asunto(s)
Labio Leporino , Fisura del Paladar , Encéfalo , Labio Leporino/etiología , Fisura del Paladar/etiología , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo
5.
Biochem Biophys Res Commun ; 526(3): 647-653, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32248972

RESUMEN

The mechanisms underlying mammalian neural tube closure remain poorly understood. We report a unique cellular process involving multicellular rosette formation, convergent cellular protrusions, and F-actin cable network of the non-neural surface ectodermal cells encircling the closure site of the posterior neuropore, which are demonstrated by scanning electron microscopy and genetic fate mapping analyses during mouse spinal neurulation. These unique cellular structures are severely disrupted in the surface ectodermal transcription factor Grhl3 mutants that exhibit fully penetrant spina bifida. We propose a novel model of mammalian neural tube closure driven by surface ectodermal dynamics, which is computationally visualized.


Asunto(s)
Actinas/metabolismo , Ectodermo/embriología , Defectos del Tubo Neural/embriología , Tubo Neural/embriología , Neurulación , Actinas/análisis , Animales , Proteínas de Unión al ADN/genética , Ectodermo/anomalías , Ectodermo/metabolismo , Ectodermo/ultraestructura , Ratones , Mutación , Tubo Neural/anomalías , Tubo Neural/metabolismo , Tubo Neural/ultraestructura , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Disrafia Espinal/embriología , Disrafia Espinal/genética , Disrafia Espinal/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/embriología , Columna Vertebral/metabolismo , Columna Vertebral/ultraestructura , Factores de Transcripción/genética
6.
Cells ; 8(10)2019 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-31569501

RESUMEN

Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.


Asunto(s)
Carcinogénesis/metabolismo , Cresta Neural/crecimiento & desarrollo , Vía de Señalización Wnt , Diferenciación Celular , Desarrollo Embrionario , Humanos , Cresta Neural/metabolismo , Neurogénesis
7.
Prog Mol Biol Transl Sci ; 153: 181-207, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389516

RESUMEN

Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, ß-catenin-dependent and noncanonical, ß-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/ß-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.


Asunto(s)
Enfermedades Renales/patología , Riñón/citología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Humanos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Organogénesis
8.
Oncotarget ; 8(70): 115254-115269, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383157

RESUMEN

Pharmacological targeting of breast cancer stem cells (CSCs) is highly promising for the treatment of breast cancer, as the small population of CSCs is responsible for tumor initiation, progression, recurrence and chemo-resistance. Celecoxib is one of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs), which have chemo-preventive activity against cancers, including breast cancer and colorectal cancer. However, the mechanisms by which NSAIDs exert its cancer prevention effects have yet been completely understood. In the present study, we investigated for the first time the effect of celecoxib on breast CSCs inhibition and its potential molecular mechanisms. Our results demonstrated that celecoxib suppresses CSC self-renewal, sensitizes chemo-resistance, inhibits epithelial to mesenchymal transition (EMT), and attenuates metastasis and tumorigenesis. Further exploring the underlying mechanism revealed that celecoxib targets breast CSCs by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Our findings suggest that celecoxib, by targeting CSCs, may be used as an adjuvant chemotherapy drug to improve breast cancer treatment outcomes.

9.
J Am Soc Nephrol ; 27(2): 417-27, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26047795

RESUMEN

Hypoplastic and/or cystic kidneys have been found in both LDL receptor-related protein 6 (Lrp6)- and ß-catenin-mutant mouse embryos, and these proteins are key molecules for Wnt signaling. However, the underlying mechanisms of Lrp6/ß-catenin signaling in renal development and cystic formation remain poorly understood. In this study, we found evidence that diminished cell proliferation and increased apoptosis occur before cystic dysplasia in the renal primordia of Lrp6-deficient mouse embryos. The expression of Ret proto-oncogene (Ret), a critical receptor for the growth factor glial cell line-derived neurotrophic factor (GDNF), which is required for early nephrogenesis, was dramatically diminished in the mutant renal primordia. The activities of other representative nephrogenic genes, including Lim1, Pax2, Pax8, GDNF, and Wnt11, were subsequently diminished in the mutant renal primordia. Molecular biology experiments demonstrated that Ret is a novel transcriptional target of Wnt/ß-catenin signaling. Wnt agonist lithium promoted Ret expression in vitro and in vivo. Furthermore, Lrp6-knockdown or lithium treatment in vitro led to downregulation or upregulation, respectively, of the phosphorylated mitogen-activated protein kinases 1 and 3, which act downstream of GDNF/Ret signaling. Mice with single and double mutations of Lrp6 and Ret were perinatal lethal and demonstrated gene dosage-dependent effects on the severity of renal hypoplasia during embryogenesis. Taken together, these results suggest that Lrp6-mediated Wnt/ß-catenin signaling modulates or interacts with a signaling network consisting of Ret cascades and related nephrogenic factors for renal development, and the disruption of these genes or signaling activities may cause a spectrum of hypoplastic and cystic kidney disorders.


Asunto(s)
Riñón/crecimiento & desarrollo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/fisiología , Riñón Displástico Multiquístico/etiología , Proteínas Proto-Oncogénicas c-ret/fisiología , Transducción de Señal , Animales , Ratones , Ratones Noqueados , Riñón Displástico Multiquístico/genética
10.
Development ; 141(1): 148-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24284205

RESUMEN

Non-canonical Wnt/planar cell polarity (PCP) signaling plays a primary role in the convergent extension that drives neural tube closure and body axis elongation. PCP signaling gene mutations cause severe neural tube defects (NTDs). However, the role of canonical Wnt/ß-catenin signaling in neural tube closure and NTDs remains poorly understood. This study shows that conditional gene targeting of ß-catenin in the dorsal neural folds of mouse embryos represses the expression of the homeobox-containing genes Pax3 and Cdx2 at the dorsal posterior neuropore (PNP), and subsequently diminishes the expression of the Wnt/ß-catenin signaling target genes T, Tbx6 and Fgf8 at the tail bud, leading to spina bifida aperta, caudal axis bending and tail truncation. We demonstrate that Pax3 and Cdx2 are novel downstream targets of Wnt/ß-catenin signaling. Transgenic activation of Pax3 cDNA can rescue the closure defect in the ß-catenin mutants, suggesting that Pax3 is a key downstream effector of ß-catenin signaling in the PNP closure process. Cdx2 is known to be crucial in posterior axis elongation and in neural tube closure. We found that Cdx2 expression is also repressed in the dorsal PNPs of Pax3-null embryos. However, the ectopically activated Pax3 in the ß-catenin mutants cannot restore Cdx2 mRNA in the dorsal PNP, suggesting that the presence of both ß-catenin and Pax3 is required for regional Cdx2 expression. Thus, ß-catenin signaling is required for caudal neural tube closure and elongation, acting through the transcriptional regulation of key target genes in the PNP.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/metabolismo , Tubo Neural/embriología , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo/genética , Factor de Transcripción CDX2 , Adhesión Celular/genética , Polaridad Celular/fisiología , Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Neurulación , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Disrafia Espinal/genética , Proteínas de Dominio T Box , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA