Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Rep ; 14(1): 10646, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724530

RESUMEN

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Asunto(s)
Imagen por Resonancia Magnética , Nanomedicina Teranóstica , Imagen por Resonancia Magnética/métodos , Nanomedicina Teranóstica/métodos , Animales , Ratones , Humanos , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Succímero/química , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología
2.
Radiol Artif Intell ; 6(2): e230362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38446042

RESUMEN

Purpose To develop an MRI-based model for clinically significant prostate cancer (csPCa) diagnosis that can resist rectal artifact interference. Materials and Methods This retrospective study included 2203 male patients with prostate lesions who underwent biparametric MRI and biopsy between January 2019 and June 2023. Targeted adversarial training with proprietary adversarial samples (TPAS) strategy was proposed to enhance model resistance against rectal artifacts. The automated csPCa diagnostic models trained with and without TPAS were compared using multicenter validation datasets. The impact of rectal artifacts on the diagnostic performance of each model at the patient and lesion levels was compared using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC). The AUC between models was compared using the DeLong test, and the AUPRC was compared using the bootstrap method. Results The TPAS model exhibited diagnostic performance improvements of 6% at the patient level (AUC: 0.87 vs 0.81, P < .001) and 7% at the lesion level (AUPRC: 0.84 vs 0.77, P = .007) compared with the control model. The TPAS model demonstrated less performance decline in the presence of rectal artifact-pattern adversarial noise than the control model (ΔAUC: -17% vs -19%, ΔAUPRC: -18% vs -21%). The TPAS model performed better than the control model in patients with moderate (AUC: 0.79 vs 0.73, AUPRC: 0.68 vs 0.61) and severe (AUC: 0.75 vs 0.57, AUPRC: 0.69 vs 0.59) artifacts. Conclusion This study demonstrates that the TPAS model can reduce rectal artifact interference in MRI-based csPCa diagnosis, thereby improving its performance in clinical applications. Keywords: MR-Diffusion-weighted Imaging, Urinary, Prostate, Comparative Studies, Diagnosis, Transfer Learning Clinical trial registration no. ChiCTR23000069832 Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Masculino , Próstata , Artefactos , Estudios Retrospectivos , Imagen por Resonancia Magnética
3.
Exp Cell Res ; 432(1): 113765, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696386

RESUMEN

Atrophic nonunion (AN) is a complex and poorly understood pathological condition resulting from impaired fracture healing. Advanced glycation end products (AGEs) have been implicated in the pathogenesis of several bone disorders, including osteoporosis and osteoarthritis. However, the role of AGEs in the development of AN remains unclear. This study found that mice fed a high-AGE diet had a higher incidence of atrophic nonunion (AN) compared to mice fed a normal diet following tibial fractures. AGEs induced two C-terminal binding proteins (CtBPs), CtBP1 and CtBP2, which were necessary for the development of AN in response to AGE accumulation. Feeding a high-AGE diet after fracture surgery in CtBP1/2-/- and RAGE-/- (receptor of AGE) mice did not result in a significant occurrence of AN. Molecular investigation revealed that CtBP1 and CtBP2 formed a heterodimer that was recruited by histone deacetylase 1 (HDAC1) and runt-related transcription factor 2 (Runx2) to assemble a complex. The CtBP1/2-HDAC1-Runx2 complex was responsible for the downregulation of two classes of bone development and differentiation genes, including bone morphogenic proteins (BMPs) and matrix metalloproteinases (MMPs). These findings demonstrate that AGE accumulation promotes the incidence of AN in a CtBP1/2-dependent manner, possibly by modulating genes related to bone development and fracture healing. These results provide new insights into the pathogenesis of AN and suggest new therapeutic targets for its prevention and treatment.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Factores de Transcripción , Ratones , Animales , Incidencia , Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada
5.
Sci Rep ; 13(1): 11656, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468520

RESUMEN

The treatment of ulna coronal process fractures in the terrible triad of elbow, especially type I and II Regan-Morrey coronoid fractures, still have been controversial. The purpose of this retrospective study was to evaluate the novel Lasso-plate technique to have a more reliable fixation and a well clinical outcomes for type I and II Regan-Morrey coronoid fractures in a terrible triad of the elbow (TTE). Patients with simple TTE, closed fracture, aged > 18 years, duration of injury < 2 weeks, type I and II Regan-Morrey coronoid process fracture fixed by the Lasso-plate technique or ORIF were enrolled in the study. Total 144 patients with type I and II Regan-Morrey coronoid fracture in TTE were included in the Lasso-plate group or ORIF (open reduction and internal fixation) group in the Xi'an Honghui Hospital from January 2017 to December 2020. Eighty-six patients in Lasso-plate group underwent surgery using a novel Lasso-plate technique. And other 58 patients in ORIF group underwent surgery using ORIF. The data of two groups, including the X-ray films, Computed tomography (CT), the range of elbow motion, Mayo Elbow Performance Score (MEPS) and the surgical complications, were extracted from the hospital's patient records. All patients in both groups were followed up at least 12 months. The mean operation time (88.2 ± 12.3 min) in Lasso-plate group is shorter than that of ORIF group (109.1 ± 13.0 min). There was one patient with injury of deep branch of radial nerve and one patient with superficial surgical incision infection in Lasso-plate group. There were two patients with surgical incision infection in ORIF group. There were three heterotopic ossifications in Lasso-plate group and eight heterotopic ossifications in ORIF group. There were 5 elbow joints stiffness in Lasso-plate group and 12 in ORIF group. At 12 months follow up, the mean range of flexion-extension motion in Lasso-plate group was 122.9° ± 13.4° versus 113.2° ± 18.1° in ORIF group (p < 0.01), the mean 89.7 ± 5.6 MEPS in Lasso-plate group versus mean 83.7 ± 6.1 MEPSin ORIF group. The fixation of coronoid process fracture in TTE by the Lasso-plate technique, especially type I and II Regan-Morrey coronoid fracture, could be easier to master and operate, could provide the sufficient stability of elbow joint to enable early functional exercise, along with a better clinical outcome, a lower surgical complication. For the treatment of TTE, we recommend the fixation of type I and II Regan-Morrey coronoid fracture with the Lasso-plate technique, which would result in a better clinical outcome.


Asunto(s)
Articulación del Codo , Fracturas Mandibulares , Fracturas del Radio , Herida Quirúrgica , Humanos , Articulación del Codo/diagnóstico por imagen , Articulación del Codo/cirugía , Codo/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Fijación Interna de Fracturas/métodos , Rango del Movimiento Articular
6.
Respir Res ; 24(1): 100, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009887

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. METHODS: Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was examined. The small interfering RNA for circ-YES1 was prepared, cell proliferation and migration were assessed. Tumorigenesis in nude mice was assayed to validate the role of circ-YES1. Bioinformatics analyses and luciferase reporter assays were utilized to identify downstream targets of circ-YES1. RESULTS: Compared to normal pulmonary epithelial cells, the circ-YES1 expression increased in NSCLC cells, and cell proliferation and migration were suppressed after circ-YES1 knockdown. Both high mobility group protein B1 (HMGB1) and miR-142-3p were found to be downstream targets of circ-YES1, and miR-142-3p inhibition and HMGB1 overexpression reversed the effects of circ-YES1 knockdown on cell proliferation and migration. Similarly, HMGB1 overexpression reversed the miR-142-3p overexpression effects on these two processes. The imaging experiment results revealed that circ-YES1 knockdown impeded tumor development and metastasis in a nude mouse xenograft model. CONCLUSION: Taken together, our results show that circ-YES1 promotes tumor development through the miR-142-3p-HMGB1 axis and support the development of circ-YES1 probability as a new therapeutic NSCLC target.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteína HMGB1 , Neoplasias Pulmonares , MicroARNs , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación hacia Abajo , Proteína HMGB1/genética , Ratones Desnudos , Neoplasias Pulmonares/genética , Proliferación Celular/genética , MicroARNs/genética , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-yes
7.
Bone Joint J ; 105-B(4): 449-454, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924186

RESUMEN

The aim of this study was to assess the safety and clinical outcome of patients with a femoral shaft fracture and a previous complex post-traumatic femoral malunion who were treated with a clamshell osteotomy and fixation with an intramedullary nail (IMN). The study involved a retrospective analysis of 23 patients. All had a previous, operatively managed, femoral shaft fracture with malunion due to hardware failure. They were treated with a clamshell osteotomy between May 2015 and March 2020. The mean age was 42.6 years (26 to 62) and 15 (65.2%) were male. The mean follow-up was 2.3 years (1 to 5). Details from their medical records were analyzed. Clinical outcomes were assessed using the quality of correction of the deformity, functional recovery, the healing time of the fracture, and complications. The mean length of time between the initial injury and surgery was 4.5 years (3 to 10). The mean operating time was 2.8 hours (2.05 to 4.4)), and the mean blood loss was 850 ml (650 to 1,020). Complications occurred in five patients (21.7%): two with wound necrosis, and three with deep vein thrombosis. The mean coronal deformity was significantly corrected from 17.78° (SD 4.62°) preoperatively to 1.35° (SD 1.72°) postoperatively (p < 0.001), and the mean sagittal deformity was significantly corrected from 20.65° (SD 5.88°) preoperatively to 1.61° (SD 1.95°; p < 0.001) postoperatively. The mean leg length discrepancy was significantly corrected from 3.57 cm (SD 1.27) preoperatively to 1.13 cm (SD 0.76) postoperatively (p < 0.001). All fractures healed at a mean of seven months (4 to 12) postoperatively. The mean Lower Extremity Functional Scale score improved significantly from 45.4 (SD 9.1) preoperatively to 66.2 (SD 5.5) postoperatively (p < 0.001). Partial cortical nonunion in the deformed segment occurred in eight patients (34.8%) and healed at a mean of 2.4 years (2 to 3) postoperatively. A clamshell osteotomy combined with IMN fixation in the treatment of patients with a femoral shaft fracture and a previous post-traumatic femoral malunion achieved excellent outcomes. Partial cortical nonunions in the deformed segment also healed satisfactorily.


Asunto(s)
Fracturas del Fémur , Fijación Intramedular de Fracturas , Humanos , Masculino , Adulto , Femenino , Estudios Retrospectivos , Curación de Fractura , Fracturas del Fémur/cirugía , Fracturas del Fémur/etiología , Fémur/cirugía , Osteotomía/efectos adversos , Resultado del Tratamiento
8.
J Mater Chem B ; 11(16): 3484-3510, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36988384

RESUMEN

Messenger RNA (mRNA) has become a key focus in the development of therapeutic agents, showing significant potential in preventing and treating a wide range of diseases. The COVID-19 pandemic in 2020 has accelerated the development of mRNA nucleic therapeutics and attracted significant investment from global biopharmaceutical companies. These therapeutics deliver genetic information into cells without altering the host genome, making them a promising treatment option. However, their clinical applications have been limited by issues such as instability, inefficient in vivo delivery, and low translational efficiency. Recent advances in molecular design and nanotechnology have helped overcome these challenges, and several mRNA formulations have demonstrated promising results in both animal and human testing against infectious diseases and cancer. This review provides an overview of the latest research progress in structural optimization strategies and delivery systems, and discusses key considerations for their future clinical use.


Asunto(s)
COVID-19 , Pandemias , Animales , Humanos , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos
9.
Front Med (Lausanne) ; 10: 1079470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744128

RESUMEN

Introduction: Gastric cancer (GC) remains the major constituent of cancer-related deaths and a global public health challenge with a high incidence rate. Helicobacter pylori (HP) plays an essential role in promoting the occurrence and progression of GC. Cancer-associated fibroblasts (CAFs) are regarded as a significant component in the tumor microenvironment (TME), which is related to the metastasis of GC. However, the regulation mechanisms of CAFs in HP-related GC are not elucidated thoroughly. Methods: HP-related genes (HRGs) were downloaded from the GSE84437 and TCGA-GC databases. The two databases were combined into one cohort for training. Furthermore, the consensus unsupervised clustering analysis was obtained to sort the training cohort into different groups for the identification of differential expression genes (DEGs). Weighted correlation network analysis (WGCNA) was performed to verify the correlation between the DEGs and cancer-associated fibroblasts which were key components in the tumor microenvironment. The least absolute shrinkage and selection operator (LASSO) was executed to find cancer-associated fibroblast-related differential expression genes (CDEGs) for the further establishment of a prognostic model. Results and discussion: In this study, 52 HP-related genes (HRGs) were screened out based on the GSE84437 and TCGA-GC databases. A total of 804 GC samples were analyzed, respectively, and clustered into two HP-related subtypes. The DEGs identified from the two subtypes were proved to have a relationship with TME. After WGCNA and LASSO, the CAFs-related module was identified, from which 21 gene signatures were confirmed. Then, a CDEGs-Score was constructed and its prediction efficiency in GC patients was conducted for validation. Overall, a highly precise nomogram was established for enhancing the adaptability of the CDEGs-Score. Furthermore, our findings revealed the applicability of CDEGs-Score in the sensitivity of chemotherapeutic drugs. In general, our research provided brand-new possibilities for comprehending HP-related GC, evaluating survival, and more efficient therapeutic strategies.

10.
J Cancer Res Clin Oncol ; 149(8): 4601-4610, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36171455

RESUMEN

PURPOSE: N6-methyladenosine (m6A) modification is a pivotal transcript chemical modification of eukaryotics, which has been identified to play critical roles on tumor metabolic reprogramming. However, the functions of m6A-reading protein YTH N6-methyladenosine RNA-binding protein 3 (YTHDF3) in osteosarcoma is still unclear. This research planned to investigate the bio-functions and mechanism in osteosarcoma tumorigenesis. METHODS: The aerobic glycolysis of osteosarcoma cells were calculated by glucose uptake, lactate production analysis, ATP analysis and metabolic flux analysis for extracellular acidification rate (ECAR). Molecular binding was identified by RIP-qPCR, RNA decay analysis. RESULTS: Results indicated that YTHDF3 is upregulated in the osteosarcoma tissue samples and cells, and closely correlated to the poor prognosis of osteosarcoma patients. Functionally, gain and loss-of-functional assays illustrated that YTHDF3 promoted the proliferation and aerobic glycolysis of osteosarcoma cells in vitro, and accelerated the tumor growth in vivo. Mechanistically, a m6A-modified PGK1 mRNA functioned as the target of YTHDF3, and YTHDF3 enhanced the PGK1 mRNA stability via m6A-dependent manner. CONCLUSIONS: In conclusion, these findings indicated that YTHDF3 functioned as an oncogene in osteosarcoma tumorigenesis through m6A/PGK1 manner, providing a therapeutic strategy for human osteosarcoma.


Asunto(s)
Ciclo del Ácido Cítrico , Osteosarcoma , Humanos , Carcinogénesis/metabolismo , Transformación Celular Neoplásica , Osteosarcoma/genética , Glucólisis , Línea Celular Tumoral , Proliferación Celular , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo
11.
Molecules ; 27(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235262

RESUMEN

Using the crystal-structure search technique and first-principles calculation, we report a new two-dimensional semiconductor, ZnSiP2, which was found to be stable by phonon, molecular-dynamic, and elastic-moduli simulations. ZnSiP2 has an indirect band gap of 1.79 eV and exhibits an anisotropic character mechanically. Here, we investigated the ZnSiP2 monolayer as an anode material for K-ion batteries and gas sensing for the adsorption of CO, CO2, SO2, NO, NO2, and NH3 gas molecules. Our calculations show that the ZnSiP2 monolayer possesses a theoretical capacity of 517 mAh/g for K ions and an ultralow diffusion barrier of 0.12 eV. Importantly, the ZnSiP2 monolayer exhibits metallic behavior after the adsorption of the K-atom layer, which provides better conductivity in a period of the battery cycle. In addition, the results show that the ZnSiP2 monolayer is highly sensitive and selective to NO2 gas molecules.

12.
World J Surg Oncol ; 20(1): 336, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207751

RESUMEN

BACKGROUND: TIMM8A is a protein-coding gene located on the X chromosome. There is evidence that TIMM8A plays an important role in mitochondrial morphology and fission. Studies have shown that mitophagy and fission could affect the function of immune cells. However, there is currently no research on this gene's role in cancer occurrence and progression. METHODS: TIMM8A expression was analyzed via the Tumor Immune Estimation Resource (TIMER) site and UALCAN database. We evaluated the influence of TIMM8A on clinical prognosis using Kaplan-Meier plotter, the PrognoScan database, and Human Protein Atlas (HPA). The correlations between TIMM8A and cancer immune infiltrates were investigated via TIMER. Tumor Immune Dysfunction and Exclusion (TIDE) was used to evaluate the potential of tumor immune evasion. Functions of TIMM8A mutations and 50 genes significantly associated with TIMM8A mutations in breast cancer (BRCA) and uterine corpus endometrial cancer (UCEC) were analyzed by GO and KEGG in LinkedOmics database. RESULTS: We investigated the role of TIMM8A in multiple cancers and found that it was significantly associated with poor prognosis in BRCA and UCEC. After analyzing the effect of TIMM8A on immune infiltration, we found Th2 CD4+ T cells might be a common pathway by which TIMM8A contributed to poor prognosis in BRCA and UCEC. Our results suggested that myeloid-derived suppressor cells (MDSC) and tumor-associated M2 macrophages (TAM M2) might be important factors in immune evasion through T cell rejection in both cancers, and considered TIMM8A as a biomarker to predict the efficacy of this therapy in BRCA and UCEC. The results of TIMM8A enrichment analysis showed us that abnormally expressed TIMM8A might affect the mitochondrial protein in BRCA and UCEC. CONCLUSIONS: Contributed to illustrating the value of TIMM8A as a prognostic biomarker, our findings suggested that TIMM8A was correlated with prognosis and immune infiltration, including CD8+ T cells, Th2 CD4+ T cells, and macrophages in BRCA and UCEC. In addition, TIMM8A might affect immune infiltration and prognosis in BRCA and UCEC by affecting mitophagy. We believed it could also be a biomarker to predict the efficacy of anti-PD-L1 therapy and proposed to improve the efficacy by eliminating MDSC and TAM M2.


Asunto(s)
Anticuerpos/inmunología , Antígeno B7-H1/inmunología , Neoplasias de la Mama , Carcinoma Endometrioide , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Proteínas de Transporte de Membrana , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Pronóstico
13.
Front Immunol ; 13: 1007089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177032

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Asunto(s)
COVID-19 , Exorribonucleasas , IMP Deshidrogenasa , FN-kappa B , Proteínas no Estructurales Virales , Bortezomib , Citocinas/metabolismo , Exorribonucleasas/metabolismo , Humanos , IMP Deshidrogenasa/metabolismo , Inosina , Interleucina-6 , Interleucina-8 , Ácido Micofenólico , FN-kappa B/metabolismo , Oxidorreductasas , Proteómica , Ribavirina , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo
14.
Biotechnol Adv ; 61: 108033, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096404

RESUMEN

Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.


Asunto(s)
Xantófilas , beta Caroteno , beta Caroteno/metabolismo , Licopeno , Carotenoides/metabolismo
15.
Front Oncol ; 12: 946493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992777

RESUMEN

Introduction: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, and photodynamic therapy (PDT) is a promising modality against cSCC. This study investigated the impact of PDT on the MAPK pathway and cell cycle alternation of cSCC as well as the related molecular mechanisms. Method: Expressing mRNA profile data sets GSE98767, GSE45216, and GSE84758 were acquired from the GEO database. The functions of differently expressed genes (DEGs) were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Least absolute shrinkage and selection operator (Lasso) analysis were used to establish a diagnosis model based on GSE98767. A correlation analysis and a protein-protein interaction (PPI) network were used to evaluate the relationship between cSCC-PDT-related genes and the MAPK pathway. Single-sample gene set enrichment analysis (ssGSEA) was performed on GSE98767 to estimate MAPK activation and cell cycle activity. Finally, the effect of MAPK activation on the cell cycle was explored in vitro. Result: Four cSCC-PDT-related genes, DUSP6, EFNB2, DNAJB1, and CCNL1, were identified as diagnostic markers of cSCC, which were upregulated in cSCC or LC50 PDT-protocol treatment and negatively correlated with the MAPK promoter. Despite having a smaller MAPK activation score, cSCC showed higher cell cycle activity. The PDT treatment suppressed the G1 to G2/M phase in JNK overexpressed A431 cells. Conclusion: CCNL1, DNAJB1, DUSP6, and EFNB2 were identified as potential PDT target genes in cSCC treatment, whose potential therapeutic mechanism was inhibiting the MAPK pathway and inducing cell cycle alternation.

16.
Front Oncol ; 12: 925743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875097

RESUMEN

Background: Metastatic disease remains the primary cause of death in patients with oral squamous cell carcinoma (OSCC), especially those who use betel nut. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are regarded as a significant component in the TME of OSCC. However, the precise mechanisms regulating CAFs in OSCC are poorly understood. Methods: Thirteen genes related to the arecoline were analyzed to explore the significant ones involved in arecoline-related OSCC metastasis. The GSE139869 (n = 10) and The Cancer Genome Atlas (TCGA)-OSCC data (n = 361) were mined for the identification of the differentially expressed genes. The least absolute shrinkage and selection operator (LASSO) regression was performed to identify the independent prognostic signatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functional enrichment of selected genes, and gene set enrichment analysis of cuproptosis-related genes was completed. Spearman's analysis and Tumor Immune Estimation Resource (TIMER) were used to visualize the correlation between the infiltration of CAFs and the gene expression. The correlation analysis of the cells and different genes, including CAF infiltration and transcripts per million expression, was assessed. The relationship between arecoline and CAFs was confirmed by cell counting kit-8 assay (CCK-8). CancerSEA was searched to identify the single-cell phenotype. Result: Arecoline-associated fibrosis-related OSCC differentially expressed genes (AFOC-DEGs), namely, PLAU, IL1A, SPP1, CCL11, TERT, and COL1A2, were screened out and selected from the Gene Expression Omnibus (GEO) database and TCGA database. AFOC-DEGs were highly expressed in OSCC, which led to poor survival of patients. Functional enrichment analysis, protein-protein interaction network construction, and Spearman's correlation analysis all suggested that AFOC-DEGs were closely associated with cuproptosis. Cellular experiments demonstrated that arecoline stimulation could significantly increase the cell viability of CAFs. Single-sample Gene Set Enrichment Analysis (ssGSEA) results showed that GLS and MTF1 were highly expressed when fibroblasts proliferated at high enrichment levels. In addition, analysis of single-cell sequencing results suggested that OSCC cells with high expression of AFOC-DEGs were associated with OSCC metastasis. Conclusion: We found a close association between arecoline, cuproptosis, and CAFs, which might play an important role in the metastasis of OSCC.

17.
Nucleic Acids Res ; 50(15): 8700-8718, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904816

RESUMEN

FACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated in both epithelial and natural killer (NK) cells. The histone acetyltransferase TIP60 contributes to the acetylation of SUPT16H middle domain (MD) at lysine 674 (K674). Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H in both epithelial and NK cells. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (HDAC1, EZH2), and further regulates their activation status and/or promoter association as well as affects the relevant histone marks (H3ac, H3K9me3 and H3K27me3). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, depletion or inhibition of SUPT16H is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that depletion or inhibition of SUPT16H also causes the remarkable activation of IFN signaling in NK cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in coordinating with BRD4 and regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of the FACT inhibitor CBL0137 to treat viral infections.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Epiteliales/metabolismo , Interferones/metabolismo , Células Asesinas Naturales/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , COVID-19 , Proteínas de Unión al ADN/genética , Células Epiteliales/inmunología , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Células Asesinas Naturales/inmunología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , SARS-CoV-2 , Factores de Elongación Transcripcional/genética , Virus Zika/metabolismo , Infección por el Virus Zika
18.
Quant Imaging Med Surg ; 12(6): 3276-3287, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35655831

RESUMEN

Background: To use adversarial training to increase the generalizability and diagnostic accuracy of deep learning models for prostate cancer diagnosis. Methods: This multicenter study retrospectively included 396 prostate cancer patients who underwent magnetic resonance imaging (development set, 297 patients from Shanghai Jiao Tong University Affiliated Sixth People's Hospital and Eighth People's Hospital; test set, 99 patients from Renmin Hospital of Wuhan University). Two binary classification deep learning models for clinically significant prostate cancer classification [PM1, pretraining Visual Geometry Group network (VGGNet)-16-based model 1; PM2, pretraining residual network (ResNet)-50-based model 2] and two multiclass classification deep learning models for prostate cancer grading (PM3, pretraining VGGNet-16-based model 3; PM4: pretraining ResNet-50-based model 4) were built using apparent diffusion coefficient and T2-weighted images. These models were then retrained with adversarial examples starting from the initial random model parameters (AM1, adversarial training VGGNet-16 model 1; AM2, adversarial training ResNet-50 model 2; AM3, adversarial training VGGNet-16 model 3; AM4, adversarial training ResNet-50 model 4, respectively). To verify whether adversarial training can improve the diagnostic model's effectiveness, we compared the diagnostic performance of the deep learning methods before and after adversarial training. Receiver operating characteristic curve analysis was performed to evaluate significant prostate cancer classification models. Differences in areas under the curve (AUCs) were compared using Delong's tests. The quadratic weighted kappa score was used to verify the PCa grading models. Results: AM1 and AM2 had significantly higher AUCs than PM1 and PM2 in the internal validation dataset (0.84 vs. 0.89 and 0.83 vs. 0.87) and test dataset (0.73 vs. 0.86 and 0.72 vs. 0.82). AM3 and AM4 showed higher κ values than PM3 and PM4 in the internal validation dataset {0.266 [95% confidence interval (CI): 0.152-0.379] vs. 0.292 (95% CI: 0.178-0.405) and 0.254 (95% CI: 0.159-0.390) vs. 0.279 (95% CI: 0.163-0.396)} and test set [0.196 (95% CI: 0.029-0.362) vs. 0.268 (95% CI: 0.109-0.427) and 0.183 (95% CI: 0.015-0.351) vs. 0.228 (95% CI: 0.068-0.389)]. Conclusions: Using adversarial examples to train prostate cancer classification deep learning models can improve their generalizability and classification abilities.

19.
PLoS Pathog ; 18(4): e1010503, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486659

RESUMEN

Polyamines are critical metabolites involved in various cellular processes and often dysregulated in cancers. Kaposi's sarcoma-associated Herpesvirus (KSHV), a defined human oncogenic virus, leads to profound alterations of host metabolic landscape to favor development of KSHV-associated malignancies. In our studies, we identified that polyamine biosynthesis and eIF5A hypusination are dynamically regulated by KSHV infection through modulation of key enzymes (ODC1 and DHPS) of these pathways. During KSHV latency, ODC1 and DHPS are upregulated along with increase of hypusinated eIF5A (hyp-eIF5A), while hyp-eIF5A is further induced along with reduction of ODC1 and intracellular polyamines during KSHV lytic reactivation. In return these metabolic pathways are required for both KSHV lytic reactivation and de novo infection. Further analysis unraveled that synthesis of critical KSHV latent and lytic proteins (LANA, RTA) depends on hypusinated-eIF5A. We also demonstrated that KSHV infection can be efficiently and specifically suppressed by inhibitors targeting these pathways. Collectively, our results illustrated that the dynamic and profound interaction of a DNA tumor virus (KSHV) with host polyamine biosynthesis and eIF5A hypusination pathways promote viral propagation, thus defining new therapeutic targets to treat KSHV-associated malignancies.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/fisiología , Humanos , Poliaminas/metabolismo , Activación Viral/genética , Latencia del Virus/genética , Replicación Viral
20.
Hepatobiliary Pancreat Dis Int ; 21(2): 106-112, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34583911

RESUMEN

Mammalian target of rapamycin (mTOR) inhibitor as an attractive drug target with promising antitumor effects has been widely investigated. High quality clinical trial has been conducted in liver transplant (LT) recipients in Western countries. However, the pertinent studies in Eastern world are paucity. Therefore, we designed a clinical trial to test whether sirolimus can improve recurrence-free survival (RFS) in hepatocellular carcinoma (HCC) patients beyond the Milan criteria after LT. This is an open-labeled, single-arm, prospective, multicenter, and real-world study aiming to evaluate the clinical outcomes of early switch to sirolimus-based regimens in HCC patients after LT. Patients with a histologically proven HCC and beyond the Milan criteria will be enrolled. The initial immunosuppressant regimens are center-specific for the first 4-6 weeks. The following regimens integrated sirolimus into the regimens as a combination therapy with reduced calcineurin inhibitors based on the condition of patients and centers. The study is planned for 4 years in total with a 2-year enrollment period and a 2-year follow-up. We predict that sirolimus conversion regimen will provide survival benefits for patients particular in the key indicator RFS as well as better quality of life. If the trial is conducted successfully, we will have a continued monitoring over a longer follow-up time to estimate indicator of overall survival. We hope that the outcome will provide better evidence for clinical decision-making and revising treatment guidelines based on Chinese population data. Trial register: Trial registered at http://www.chictr.org.cn: ChiCTR2100042869.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/cirugía , Humanos , Inmunosupresores/efectos adversos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/cirugía , Trasplante de Hígado/métodos , Estudios Multicéntricos como Asunto , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estudios Prospectivos , Calidad de Vida , Sirolimus/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA