Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 940: 173526, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38825199

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) is a prevalent upper respiratory condition that manifests in two primary subtypes: CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). While previous studies indicate a correlation between air pollution and CRS, the role of genetic predisposition in this relationship remains largely unexplored. We hypothesized that higher air pollution exposure would lead to the development of CRS, and that genetic susceptibility might modify this association. METHODS: This cohort study involving 367,298 adult participants from the UK Biobank, followed from March 2006 to October 2021. Air pollution metrics were estimated at residential locations using land-use regression models. Cox proportional hazard models were employed to explore the associations between air pollution exposure and CRS, CRSwNP, and CRSsNP. A polygenic risk score (PRS) was constructed to evaluate the joint effect of air pollution and genetic predisposition on the development of CRS. RESULTS: We found that the risk of CRS increased under long-term exposure to PM2.5 [the hazard ratios (HRs) with 95 % CIs: 1.59 (1.26-2.01)], PM10 [1.64 (1.26-2.12)], NO2 [1.11 (1.04-1.17)], and NOx [1.18 (1.12-1.25)], respectively. These effects were more pronounced among participants with CRSwNP, although the differences were not statistically significant. Additionally, we found that the risks for CRS and CRSwNP increased in a graded manner among participants with higher PRS or higher exposure to PM2.5, PM10, or NOx concentrations. However, no multiplicative or additive interactions were observed. CONCLUSIONS: Long-term exposure to air pollution increases the risk of CRS, particularly CRSwNP underscoring the need to prioritize clean air initiatives and environmental regulations.


Asunto(s)
Contaminación del Aire , Rinosinusitis , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contaminación del Aire/efectos adversos , Enfermedad Crónica , Exposición a Riesgos Ambientales/efectos adversos , Predisposición Genética a la Enfermedad , Pólipos Nasales/epidemiología , Pólipos Nasales/genética , Material Particulado , Estudios Prospectivos , Rinosinusitis/epidemiología , Biobanco del Reino Unido , Reino Unido/epidemiología
2.
Int Immunopharmacol ; 129: 111588, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38290207

RESUMEN

BACKGROUND: Senile osteoporosis (SOP) is an age-related metabolic bone disease that currently lacks specific therapeutic interventions. Thus, this study aimed to investigate the effect of Astragaloside IV (AS-IV) on macrophage senescence, bone marrow mesenchymal stem cell (BMSC) osteogenesis, and SOP progression. METHODS: A senescent macrophage model was established and treated with varying concentrations of AS-IV. Cell activity was measured using the CCK8 assay. The senescence levels of macrophages were evaluated through ß-galactosidase staining, PCR, and immunofluorescence. Macrophage mitochondrial function was assessed using ROS and JC-1 staining. Macrophage polarization was evaluated through PCR, Western blot, and immunofluorescence. The inhibitory effects of AS-IV on macrophage senescence were investigated using Western blot analysis. Furthermore, the effects of macrophage conditioned medium (CM) on BMSCs osteogenic were detected using ALP, alizarin red, and PCR. RESULTS: AS-IV inhibited macrophage senescence and M1 polarization, alleviated mitochondrial dysfunction, and promoted M2 polarization. Mechanistically, it suppressed the STING/NF-κB pathway in H2O2-activated macrophages. Conversely, the STING agonist c-di-GMP reversed the effects of AS-IV on macrophage senescence. Additionally, AS-IV-induced macrophage CM promoted BMSC osteogenic differentiation. In vivo, AS-IV treatment ameliorated aberrant bone microstructure and bone mass loss in the SOP mouse model, inhibited macrophage senescence, and promoted M2 polarization. CONCLUSIONS: By modulating the STING/NF-κB signaling pathway, AS-IV potentially inhibited macrophage senescence and stimulated osteogenic differentiation of BMSCs, thus exerting an anti-osteoporotic effect. Consequently, AS-IV may serve as an effective therapeutic candidate for the treatment of osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Saponinas , Triterpenos , Ratones , Animales , FN-kappa B , Osteogénesis , Galactosa , Peróxido de Hidrógeno/farmacología , Diferenciación Celular , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Macrófagos
3.
Biomark Res ; 10(1): 28, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505392

RESUMEN

Circular RNAs (circRNAs) are a type of recently discovered noncoding RNA. They exert their biological functions by competitively binding to microRNAs (miRNAs) as miRNA sponges, promoting gene transcription and participating in the regulation of selective splicing, interacting with proteins and being translated into proteins. Exosomes are derived from intracavitary vesicles (ILVs), which are formed by the inward budding of multivesicular bodies (MVBs), and exosome release plays a pivotal role in intercellular communication. Accumulating evidence indicates that circRNAs in exosomes are associated with solid tumor invasion and metastasis. Additionally, emerging studies in the last 1 ~ 2 years have revealed that exosomal circRNA also have effect on hematological malignancies. In this review, we outline the properties and biological functions of circRNAs and exosomes. In particular, we summarize in detail the mechanism and roles of exosomal circRNAs and highlight their application as novel biomarkers in malignant tumors.

4.
Front Oncol ; 11: 758653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778078

RESUMEN

The long non-coding RNA metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) was initially found to be overexpressed in early non-small cell lung cancer (NSCLC). Accumulating studies have shown that MALAT1 is overexpressed in the tissue or serum of NSCLC and plays a key role in its occurrence and development. In addition, the expression level of MALAT1 is significantly related to the tumor size, stage, metastasis, and distant invasion of NSCLC. Therefore, MALAT1 could be used as a biomarker for the early diagnosis, severity assessment, or prognosis evaluation of NSCLC patients. This review describes the basic properties and biological functions of MALAT1, focuses on the specific molecular mechanism of MALAT1 as a microRNA sponge in the occurrence and development of NSCLC in recent years, and emphasizes the application and potential prospect of MALAT1 in molecular biological markers and targeted therapy of NSCLC.

5.
J Cell Mol Med ; 25(8): 3667-3679, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687140

RESUMEN

Circular RNA (circRNA) is a highly abundant type of single-stranded non-coding RNA. Novel research has discovered many roles of circRNA in colorectal cancer (CRC) including proliferation, metastasis and apoptosis. Furthermore, circRNAs also play a role in the development of drug resistance and have unique associations with tumour size, staging and overall survival in CRC that lend circRNAs the potential to serve as diagnostic and prognostic biomarkers. Among cancers worldwide, CRC ranks second in mortality and third in incidence. In order to have a better understanding of the influence of circRNA on CRC development and progression, this review summarizes the role of specific circRNAs in CRC and evaluates their potential value as therapeutic targets and biomarkers for CRC. We aim to provide insight in the development of therapy and clinical decision-making.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Regulación Neoplásica de la Expresión Génica , ARN Circular/genética , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Humanos
6.
Mol Ther Nucleic Acids ; 19: 458-467, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31902745

RESUMEN

Ischemia-reperfusion (I/R) injury occurs during cardiac surgery and is the major factor leading to heart dysfunction and heart failure. Our previous study showed that gene and microRNA expression profiles are altered in heart grafts with extended I/R injury. In this study, we, for the first time, demonstrated that I/R injury upregulates the expression of Polo-like kinase 2 (Plk2) but decreases miR-128 expression in heart cells both in vitro and in vivo. Silencing Plk2 using small interfering RNA (siRNA) protects cells from Antimycin A-induced cell apoptosis/death. Silencing Plk2 also decreases phosphorylated p65 expression but increases Angiopoietin 1 expression. In addition, Plk2 is negatively regulated by miR-128. miR-128 exerts a protective effect on cell apoptosis similar to Plk2 siRNA in response to I/R stress. Methylation inhibitor 5-azacytidine (5-AZ) increases the expression of miR-128 and subsequently reduces Plk2 expression and cell apoptosis. In conclusion, this study demonstrated that Plk2 regulated by miR-128 induces cell apoptosis/death in response to I/R stress through activation of the nuclear factor κB (NF-κB) signal pathway. miR-128 and Plk2 are new targets for preventing cardiac I/R injury or oxidative stress-mediated injury.

7.
Cancer Manag Res ; 11: 10633-10639, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31908535

RESUMEN

PURPOSE: Although the roles of lncRNA FOXD2-AS1 have been investigated in many types of cancers including colorectal cancer (CRC), its functionality remains to be further investigated. Analysis of the TCGA data set revealed that FOXD2-AS1 was up-regulated in CRC tissues. This study aimed to analyze the function of FOXD2-AS1 in CRC. METHODS: FOXD2-AS1 expression was detected by qPCR. A 5-year follow-up study was performed to analyze the prognostic value of FOXD2-AS1 for CRC. Overexpression experiments were performed to analyze the interactions among FOXD2-AS1, miR-25-3p and Sema4C. Transwell assays were performed to analyze cell invasion and migration. RESULTS: In this study, we further confirmed the up-regulation of FOXD2-AS1 in CRC patients and showed that high FOXD2-AS1 level predicted poor survival. Bioinformatics analysis showed that miR-25-3p may bind FOXD2-AS1, while over-expression experiments showed no effects on each other's expression. Instead, FOXD2-AS1 over-expression led to the up-regulate Sema4C, which is a target of miR-25-3p. Transwell assay showed that FOXD2-AS1 and Sema4C over-expression led to the increased invasion and migration rates of CRC cells. MiR-25-3p plays the opposite role and attenuated the effects of FOXD2-AS1 and Sema4C over-expression. CONCLUSION: FOXD2-AS1 may regulate the miR-25-3p/Sema4C axis to promote the invasion and migration of CRC cells.

8.
J Cancer ; 9(14): 2436-2442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026840

RESUMEN

Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive functions and contribute to the formation of the tumor microenvironment. Long non-coding (Lnc) RNAs are highly important factors associated with tumors and may be used as markers for tumor diagnosis, which is valuable for targeted therapy. LncRNA MALAT1 is expressed in various tissues and plays a critical role in cell proliferation, including tumorigenesis and metastasis. However, the role of MALAT1 in MDSCs is unclear. In this study, we observed an increased proportion of MDSCs and elevated levels of the related molecule arginase-1 (ARG-1) in peripheral blood mononuclear cells (PBMCs) obtained from lung cancer patients. The proportion of CD8+ cytotoxic T lymphocyte (CTL) was significantly decreased in PBMCs from lung cancer patients. Moreover, the proportion of CTL cells was negatively correlated with the proportion of MDSCs. Furthermore, MALAT1 levels were decreased in PBMCs from lung cancer patients. The relative expression of MALAT1 was moderate negatively correlated with the proportion of MDSCs. In vitro results indicate that the knockdown of MALAT1 significantly increased the proportion of MDSCs. Our data provide the first evidence that lncRNA MALAT1 negatively regulates MDSCs and is decreased in PBMCs from lung cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA