Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Metab ; 76: 101783, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517520

RESUMEN

OBJECTIVE: Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS: We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS: Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Lipocalina 2/genética , Macrófagos , Esclerosis Múltiple/patología , Sistema Nervioso Central
2.
Biomed Pharmacother ; 158: 114137, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525817

RESUMEN

Homocysteine (Hcy) is one of the independent risk factors of cardiovascular disease. Sodium tanshinone IIA sulfonate (STS) is a hydrophilic derivate of tanshinone IIA which is the main active constitute of Chinese Materia Medica Salviae Miltiorrhizae Radix et Rhizoma, and exhibits multiple pharmacological activities. However, whether STS could prevent from Hcy-induced endothelial cell injury is unknown. We found that STS dramatically reversed Hcy-induced cell death concentration dependently in human umbilical vascular endothelial cells (HUVECs). STS ameliorated the endothelial cell cycle progression, proliferation and cell migratory function impaired by Hcy, which might be co-related to the inhibition of intracellular oxidative stress and mitochondrial dysfunction. STS also elevated the phosphorylation of AKT and MAPKs and protein expression of sirtuin1 (SIRT1), NRF2 and HO-1 which were suppressed by Hcy. The protective effect of STS against Hcy-induced endothelial cell toxicity was partially attenuated by PI3K, AKT, MEK, ERK, SIRT1, NRF2 and HO-1 inhibitors. Besides, knockdown of SIRT1 by its siRNA dramatically decreased the endothelial protective effect of STS accompanied with suppression of SIRT1, NRF2, HO-1 and phosphorylated AKT. The activation of AKT or NRF2 partially reversed SIRT1-knockdown impaired cyto-protective effect of STS against Hcy-induced cell injury. Furthermore, STS prevented from Hcy-induced intracellular nicotinamide N-methyltransferase (NNMT) reduction along with elevation of intracellular methylnicotinamide (MNA), and MNA enhanced STS protecting against Hcy induced endothelial death. Knockdown of NNMT reduced the protective effect of STS against Hcy induced endothelial cell injury. Collectively, STS presented potent endothelial protective effect against Hcy and the underlying molecular mechanisms were involved in the suppression of intracellular oxidative stress and mitochondria dysfunction by activation of AKT/MAPKs, SIRT1/NRF2/HO-1 and NNMT/MNA signaling pathways.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Estrés Oxidativo , Células Endoteliales de la Vena Umbilical Humana , Nicotinamida N-Metiltransferasa/metabolismo
3.
Front Pharmacol ; 13: 1037341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532721

RESUMEN

Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.

4.
J Ethnopharmacol ; 297: 115547, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35870688

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Tribulus , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Músculo Liso Vascular , Miocitos del Músculo Liso , Preparaciones Farmacéuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
5.
Acta Pharmacol Sin ; 43(6): 1544-1555, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34426644

RESUMEN

Metastasis is the leading cause of death in breast cancer patients. Osthole, as an active compound detected in the traditional Chinese medicine Wenshen Zhuanggu Formula, has shown a promising anti-metastatic activity in human breast cancer cells, but the underlying mechanisms remain ambiguous. In this study we elucidated the anti-metastatic mechanisms of osthole in highly metastatic breast cancer cells and a zebrafish xenograft model. We showed that the expression of integrin α3 (ITGα3) and integrin ß5 (ITGß5) was upregulated in highly metastatic MDA-MB-231, MDA-MB-231BO breast cancer cell lines but was downregulated in poorly metastatic MCF-7 breast cancer cell line, which might be the key targets of osthole's anti-metastatic action. Furthermore, we showed that knockdown of ITGα3 and ITGß5 attenuated breast cancer cell migration and invasion possibly via suppression of FAK/Src/Rac1 pathway, whereas overexpression of ITGα3 and ITGß5 caused the opposite effects. Consistently, osthole significantly inhibited breast cancer metastasis by downregulating ITGα3/ITGß5 signaling in vitro and in vivo. These results provide new evidence that osthole may be developed as a candidate therapeutic drug for metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Cumarinas/farmacología , Cumarinas/uso terapéutico , Femenino , Humanos , Invasividad Neoplásica/prevención & control , Pez Cebra
6.
Artículo en Inglés | MEDLINE | ID: mdl-33628304

RESUMEN

Inflammation response is a regulated cellular process and excessive inflammation has been recognized in numerous diseases, such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, and cancer. Tribulus terrestris L. (TT), also known as Bai Jili in Chinese, has been applied in traditional Chinese medicine for thousands of years while its anti-inflammatory activity and underlying mechanism are not fully elucidated. Here, we hypothesize Tribulus terrestris L. extract (BJL) which presents anti-inflammatory effect, and the action mechanism was also investigated. We employed the transgenic zebrafish line Tg(MPO:GFP), which expresses green fluorescence protein (GFP) in neutrophils, and mice macrophage RAW 264.7 cells as the in vivo and in vitro model to evaluate the anti-inflammatory effect of BJL, respectively. The production of nitric oxide (NO) was measured by Griess reagent. The mRNA expression levels of inflammatory cytokines and inducible nitric oxide synthase (iNOS) were measured by real-time PCR, and the intracellular total or phosphorylated protein levels of NF-κB, Akt, and MAPKs including MEK, ERK, p38, and JNK were detected by western blot. We found that BJL significantly inhibited fin transection or lipopolysaccharide- (LPS-) induced neutrophil migration and aggregation in zebrafish in vivo. In mice macrophage RAW 264.7 cells, BJL ameliorated LPS-triggered excessive release of NO and transcription of inflammatory cytokine genes including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). BJL also reduced the LPS-induced elevations of intracellular iNOS and nuclear factor kappa B (NF-κB) which mediate the cellular NO and inflammatory cytokine productions, respectively. Moreover, LPS dramatically increased the phosphorylation of Akt and MAPKs including MEK, ERK, p38, and JNK in RAW 264.7 cells, while cotreatment BJL with LPS suppressed their phosphorylation. Taken together, our data suggested that BJL presented potent anti-inflammatory effect and the underlying mechanism was closely related to the inhibition of Akt/MAPKs and NF-κB/iNOS-NO signaling pathways.

7.
Front Pharmacol ; 11: 764, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581782

RESUMEN

Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.

8.
Acta Pharmacol Sin ; 41(2): 260-269, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31515528

RESUMEN

Timosaponin AIII (Timo AIII) is a natural steroidal saponin isolated from the traditional Chinese herb Anemarrhena asphodeloides Bge with proved effectiveness in the treatment of numerous cancers. However, whether Timo AIII suppresses tumor angiogenesis remains unclear. In the present study, we investigated the antiangiogenesis effects of Timo AIII and the underlying mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish embryos in vivo. We showed that treatment with Timo AIII (0.5-2 µM) partially disrupted the intersegmental vessels (ISVs) and subintestinal vessels (SIVs) growth in transgenic zebrafish Tg(fli-1a: EGFP)y1. Timo AIII (0.5-4 µM) dose-dependently inhibited VEGF-induced proliferation, migration, invasion, and tube formation of HUVECs, but these inhibitory effects were not due to its cytotoxicity. We further demonstrated that Timo AIII treatment significantly suppressed the expression of VEGF receptor (VEGFR) and the phosphorylation of Akt, MEK1/2, and ERK1/2 in HUVECs. Timo AIII treatment also significantly inhibited VEGF-triggered phosphorylation of VEGFR2, Akt, and ERK1/2 in HUVECs. Moreover, we conducted RNA-Seq and analyzed the transcriptome changes in both HUVECs and zebrafish embryos following Timo AIII treatment. The coexpression network analysis results showed that various biological processes and signaling pathways were enriched including angiogenesis, cell motility, cell adhesion, protein serine/threonine kinase activity, transmembrane signaling receptor activity, growth factor activity, etc., which was consistent with the antiangiogenesis effects of Timo AIII in HUVECs and zebrafish embryos. We conclude that the antiangiogenesis effect of Timo AIII is mediated through VEGF/PI3K/Akt/MAPK signaling cascade; Timo AIII potentially exerts antiangiogenesis effect in cancer treatment.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Saponinas/farmacología , Esteroides/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Saponinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Esteroides/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
9.
Phytomedicine ; 65: 153083, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600690

RESUMEN

BACKGROUND: Angiogenesis plays a critical role in ischemia disease like coronary heart disease. Shunxinyin formula has been developed for treating coronary heart disease according to the principle of traditional Chinese medicine while its underlying mechanism is not fully elucidated. PURPOSE: Here, we hypothesize Shuxinyin formula could promote angiogenesis and microcirculation, and the underlying mechanism is also investigated. METHODS: We established the chemical profile of Shuxinyin (SXY) extract utilizing a UHPLC-Q/Exactive analysis system and evaluated its pro-angiogenesis effect in zebrafish model. The underlying mechanisms were investigated by combination of pharmacological experiments with transcriptome analysis in zebrafish. Zebrafish treated with VEGF was served as the positive control in present study. RESULTS: We found SXY significantly enhanced the sub-intestinal vessel plexus (SIVs) growth in zebrafish. Co-treatment and post-treatment SXY attenuated VEGF receptor tyrosine kinase inhibitor II (VRI)-induced deficiency of intersegmental vessels (ISVs) in a concentration dependent manner. Post-treatment VEGF, which is a well-known angiogenesis driver, also partially ameliorated VRI-induced ISVs deficiency. In addition, SXY inhibited the down-regulation of VEGF receptors, including kdr, flt1 and kdrl, induced by VRI in zebrafish. The pro-angiogenesis effect of SXY on VRI-induced ISVs deficiency was suppressed by PI3K and JNK inhibitors, and Akt inhibitor abolished the pro-angiogenesis effect of SXY. The transcriptome profile of SXY preventing from VRI-induced vascular growth deficiency revealed that the underlying mechanisms were also co-related to cell junction, apoptosis and autophagy. CONCLUSION: We could conclude that SXY presented pro-angiogenesis effect and the action mechanisms were involved in VEGF/PI3K/Akt/MAPK signaling pathways, cell junction, apoptosis and autophagy.


Asunto(s)
Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcriptoma/efectos de los fármacos , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
10.
Biomed Pharmacother ; 118: 109362, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31545252

RESUMEN

Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivate of tanshinone IIA (Tan IIA) which is an active lipophilic constitute of Chinese Materia Medica Salvia miltiorrhiza Bge. (Danshen). STS presents multiple pharmacological activities, including anti-oxidant, anti-inflammation and anti-apoptosis, and has been approved for treatment of cardiovascular diseases by China State Food and Drug Administration (CFDA). In this review, we comprehensively summarized the pharmacological activities and pharmacokinetics of STS, which could support the further application and development of STS. In the recent decades, numerous experimental and clinical studies have been conducted to investigate the potential treatment effects of STS in various diseases, such as heart diseases, brain diseases, pulmonary diseases, cancers, sepsis and so on. The underlying mechanisms were most related to anti-oxidative and anti-inflammatory effects of STS via regulating various transcription factors, such as NF-κB, Nrf2, Stat1/3, Smad2/3, Hif-1α and ß-catenin. Iron channels, including Ca2+, K+ and Cl- channels, were also the important targets of STS. Additionally, we emphasized the differences between STS and Tan IIA despite the interchangeable use of Tan IIA and STS in many previous studies. It is promising to improve the efficacy and reduce side effects of chemotherapeutic drug by the combination use of STS in canner treatment. The application of STS in pregnancy needs to be seriously considered. Moreover, the drug-drug interactions between STS and other drugs needs to be further studied as well as the complications of STS.


Asunto(s)
Fenantrenos/farmacología , Fenantrenos/farmacocinética , Animales , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Humanos , Fenantrenos/química , Transducción de Señal/efectos de los fármacos
11.
Pharmacol Res ; 128: 389-398, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29017932

RESUMEN

Defects in vascular integrity in cerebrovasculature lead to serious pathologies including hemorrhagic stroke. The stability of cell adhesion junctions and actin-myosin contractile machinery are two major determinants for the integrity of endothelial monolayer. Here we have evaluated the protective effects of tanshinone I (Tan I), a lipophilic compound presents in Salvia miltiorrhiza, against atorvastatin-induced cerebral hemorrhage in zebrafish in vivo, and further dissected the molecular mechanisms in HUVECs. We demonstrated that Tan I protected endothelial integrity by stabilizing cell-cell adhesion junctions via the inhibition of Src-mediated VE-cadherin internalization and subsequent junction-linked actin cytoskeleton depolymerization. In addition, Tan I inhibited ROCK-associated endothelial contractile machinery by dephosphorylating cofilin and MYPT1. These findings identified Tan I as an endothelial stabilizing agent and suggested Tan I as a potential treatment for vascular leakage in hemorrhagic stroke.


Asunto(s)
Abietanos/farmacología , Actinas/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Hemorragia Cerebral/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Miosinas/metabolismo , Sustancias Protectoras/farmacología , Animales , Animales Modificados Genéticamente , Atorvastatina , Adhesión Celular/efectos de los fármacos , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/prevención & control , Embrión no Mamífero , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Pez Cebra/genética
12.
J Ethnopharmacol ; 200: 74-83, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27989880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Spatholobi Caulis is a traditional blood-activating and stasis-dispelling herb medicine, which has been used to treat diseases related to blood stasis syndrome (BSS) by inhibiting platelet aggregation, stimulate hematopoiesis, etc. It has been demonstrated that pro-angiogenesis could improve BSS. However, the pro-angiogenic activity of Spatholobi Caulis was not well elucidated AIM OF STUDY: To determine the potential pro-angiogenic activity of Spatholobi Caulis and elucidate its underlying mechanism. The active fractions of Spatholobi Caulis were further screened. MATERIAL AND METHODS: Gelatin precipitation and reversed-phase liquid chromatography (RPLC) were used to purify the methanol extracts of Spatholobi Caulis, respectively. The RPLC was also used to prepare fractions. Total flavonoids of purified methanol extracts of Spatholobi Caulis (PSC) were determined using ultraviolet spectrophotometry. The morphological observation of subintestinal vessel plexus (SIVs) and tyrosine kinase inhibitor II (VRI)-induced intersegmental blood vessels (ISVs) loss in transgenic zebrafish Tg(fli-1a: EGFP)y1 were selected to evaluate the pro-angiogenic activity of PSC in vivo. Cell proliferation by MTT assay and cell migration assay were used to evaluate the pro-angiogenesis effect of PSC in human umbilical vein endothelial cells (HUVECs) in vitro. Both zebrafish and HUVECs were used in screening active fractions of PSC. The mechanism of PSC promoting angiogenesis were studied by real-time PCR in zebrafish and western blotting in HUVECs. RESULTS: Co-treatment PSC dramatically rescued VRI-induced ISVs loss in zebrafish embryos in a dose-dependent manner and 80% of the defective vascular recovered at the concentration of 30µg/ml compared with VRI-only group. PSC also concentration-dependently increased average sprouting number and diameter of SIVs in zebrafish embryo. Real-time PCR assay proved that PSC significantly restored the down regulation of VEGFRs including Flt-1, Kdr and Kdrl induced by VRI in zebrafish (P<0.001). Furthermore, PSC not only promoted proliferation and migration of normal HUVECs but also ameliorated VRI-induced HUVECs cytotoxicity. Western blotting assay showed that co-treatment of PSC increased the expression of VEGFRs and phosphorylation of MAPKs which decreased by VRI treatment. In addition, quality evaluation experiments showed that the content of total flavonoids of PSC reached 56.36% and the main pro-angiogenic fractions of PSC were F3, F4 and F5 both in zebrafish and HUVECs. CONCLUSIONS: Our data demonstrated that PSC presented pro-angiogenic activity both in zebrafish and HUVECs, and principal pro-angiogenic active components were likely flavonoids. Thus, the current study provided evidence for the clinical usage of Spatholobi Caulis in promoting blood circulation and removing stasis in traditional Chinese medicine (TCM).


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Fabaceae , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/biosíntesis , Inductores de la Angiogénesis/aislamiento & purificación , Inductores de la Angiogénesis/farmacología , Animales , Animales Modificados Genéticamente , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/fisiología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Neovascularización Fisiológica/fisiología , Extractos Vegetales/aislamiento & purificación , Tallos de la Planta , Receptores de Factores de Crecimiento Endotelial Vascular/agonistas , Pez Cebra
13.
J Ethnopharmacol ; 181: 50-8, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-26806572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Panax notoginseng is traditionally used as an anti-hemorrhagic agent to promote blood circulation without causing "congealed" blood. Furthermore, the flower of P. notoginseng is a popular, traditional medicine taken daily for the preventing of hypertension and for reducing blood cholesterol profiles. Besides, the flower of P. notoginseng contains a higher level of saponins, particularly protopanaxadiol-type ginsenosides, as compared to the root. However, detailed pharmacological studies on this flower have rarely been conducted. MATERIAL AND METHODS: In this study, the saponins extracted from the flower of P. notoginseng (FS) were examined on the endothelial cell migration assay, chemically induced vascular insufficiency model in zebrafish larvae and myocardial infraction (MI) model in rats, for determination of their pro-angiogenic and therapeutic effects on MI treatment. RESULTS: Our results demonstrate that FS significantly promoted VEGF-induced migration of human umbilical vein endothelial cells (HUVECs) and partially restored defective intersegmental vessels (ISV) in a chemically induced vascular insufficiency model of zebrafish larvae. When compared to MI group, two weeks post-treatment of FS (25-50mg/kg/day) induced approximately 3-fold upregulation of VEGF mRNA expression and a concomitant increase in blood vessel density in the peri-infarct area of the heart. Moreover, TUNEL analysis indicates a reduction in the mean apoptotic nuclei per field in peri-infarct myocardium upon FS treatment. CONCLUSIONS: The pro-angiogenic effects of FS demonstrated in in vitro and in vivo experimental models suggest that the purified saponin preparation from flowers of P. notoginseng may potentially provide preventive and therapeutic agent for cardiovascular diseases.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Flores/química , Infarto del Miocardio/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Panax notoginseng/química , Saponinas/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Ginsenósidos/farmacología , Corazón/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Etiquetado Corte-Fin in Situ/métodos , Larva/efectos de los fármacos , Larva/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Neovascularización Patológica/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
14.
Free Radic Biol Med ; 89: 1057-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26415025

RESUMEN

Progressive degeneration and death of neurons are main causes of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Although some current medicines may temporarily improve their symptoms, no treatments can slow or halt the progression of neuronal death. In this study, a pyrimidine derivative, benzyl 7-(4-hydroxy-3-methoxyphenyl)-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate (BHDPC), was found to attenuate dramatically the MPTP-induced death of dopaminergic neurons and improve behavior movement deficiency in zebrafish, supporting its potential neuroprotective activity in vivo. Further study in rat organotypic cerebellar cultures indicated that BHDPC was able to suppress MPP(+)-induced cell death of brain tissue slices ex vivo. The protective effect of BHDPC against MPP(+) toxicity was also effective in human neuroblastoma SH-SY5Y cells through restoring abnormal changes in mitochondrial membrane potential and numerous apoptotic regulators. Western blotting analysis indicated that BHDPC was able to activate PKA/CREB survival signaling and further up-regulate Bcl2 expression. However, BHDPC failed to suppress MPP(+)-induced cytotoxicity and the increase of caspase 3 activity in the presence of the PKA inhibitor H89. Taken together, these results suggest that BHDPC is a potential neuroprotectant with prosurvival effects in multiple models of neurodegenerative disease in vitro, ex vivo, and in vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por MPTP/prevención & control , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Pirimidinas/farmacología , Tetrazoles/farmacología , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Western Blotting , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Herbicidas/toxicidad , Humanos , Locomoción/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Teóricos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Rombencéfalo/efectos de los fármacos , Rombencéfalo/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
15.
J Ethnopharmacol ; 170: 8-15, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25934514

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Schisandra chinensis (Turcz.) Baill, has been traditionally used in management of liver diseases and ageing associated neurodegeneration. The bioactive compound from this medicinal plant would be valuable for its potential use in prevention and treatment of Parkinson׳s disease. AIM OF THE STUDY: The overall objective of the present study was to understand the neuroprotective effect of schisantherin A, a dibenzocyclooctadiene lignan from the fruit of S. chinensis (Turcz.) Baill, and to elucidate its underlying mechanism of action. MATERIAL AND METHODS: This study investigated the protective effect of schisantherin A against selective dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA)-induced neural damage in human neuroblastoma SH-SY5Y cells and zebrafish models. Oxidative stress and related signaling pathways underlying the neuroprotective effect were determined by multiple biochemical assays and Western blot. RESULTS: Pretreatment with schisantherin A offered neuroprotection against 6-OHDA-induced SH-SY5Y cytotoxicity. Moreover, schisantherin A could prevent 6-OHDA-stimulated dopaminergic neuron loss in zebrafish. Our mechanistic study showed that schisantherin A can regulate intracellular ROS accumulation, and inhibit NO overproduction by down-regulating the over-expression of iNOS in 6-OHDA treated SH-SY5Y cells. Schisantherin A also protects against 6-OHDA-mediated activation of MAPKs, PI3K/Akt and GSK3ß. CONCLUSION: These findings demonstrate that schisantherin A may have potential therapeutic value for neurodegenerative diseases associated with abnormal oxidative stress such as Parkinson׳s disease.


Asunto(s)
Ciclooctanos/farmacología , Dioxoles/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Lignanos/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antiparkinsonianos/aislamiento & purificación , Antiparkinsonianos/farmacología , Línea Celular Tumoral , Ciclooctanos/aislamiento & purificación , Dioxoles/aislamiento & purificación , Neuronas Dopaminérgicas/patología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Lignanos/aislamiento & purificación , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/aislamiento & purificación , Óxido Nítrico/metabolismo , Oxidopamina/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Schisandra/química , Transducción de Señal/efectos de los fármacos , Pez Cebra
16.
Free Radic Biol Med ; 74: 283-93, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973649

RESUMEN

Parkinson disease (PD) is a neurodegenerative disease with multifactorial etiopathogenesis. The discovery of drug candidates that act on new targets of PD is required to address the varied pathological aspects and modify the disease process. In this study, a small compound, 2-(5-methyl-1-benzofuran-3-yl)-N-(5-propylsulfanyl-1,3,4-thiadiazol-2-yl) acetamide (MBPTA) was identified as a novel Rho-associated protein kinase inhibitor with significant protective effects against 1-methyl-4-phenylpyridinium ion (MPP(+))-induced damage in SH-SY5Y neuroblastoma cells. Further investigation showed that pretreatment of SH-SY5Y cells with MBPTA significantly suppressed MPP(+)-induced cell death by restoring abnormal changes in nuclear morphology, mitochondrial membrane potential, and numerous apoptotic regulators. MBPTA was able to inhibit MPP(+)-induced reactive oxygen species (ROS)/NO generation, overexpression of inducible NO synthase, and activation of NF-κB, indicating the critical role of MBPTA in regulating ROS/NO-mediated cell death. Furthermore, MBPTA was shown to activate PI3K/Akt survival signaling, and its cytoprotective effect was abolished by PI3K and Akt inhibitors. The structural comparison of a series of MBPTA analogs revealed that the benzofuran moiety probably plays a crucial role in the anti-oxidative stress action. Taken together, these results suggest that MBPTA protects against MPP(+)-induced apoptosis in a neuronal cell line through inhibition of ROS/NO generation and activation of PI3K/Akt signaling.


Asunto(s)
Antioxidantes/farmacología , Benzofuranos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Tiadiazoles/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Acetamidas/química , Ácidos Alcanesulfónicos/química , Antioxidantes/química , Benzofuranos/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Terapia Molecular Dirigida , Proteína Oncogénica v-akt/metabolismo , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Compuestos de Piridinio/toxicidad , Transducción de Señal/efectos de los fármacos , Tiadiazoles/química
17.
Neurosci Lett ; 543: 121-5, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23562886

RESUMEN

The overproduction of reactive oxygen species (ROS) has been implicated in the development of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Previous studies have indicated that danshensu (beta-3,4-dihydroxyphenyl-lactic acid), a main hydrophilic component of the Chinese materia medica Radix Salviae Miltiorrhizae (Danshen, Pharmacopoeia of PR China), has ROS scavenging and antioxidant activities, however its mechanism of action was not clear. In this study, we investigated whether the protective effects of danshensu against neurotoxin 6-hydroxydopamine (6-OHDA)-induced oxidative stress involved the Nrf2/HO-1 pathways. Pretreatment with danshensu in PC12 cells significantly attenuated 6-OHDA-induced cytotoxicity and the production of ROS. Danshensu activated the nuclear translocation of Nrf2 to increase heme oxygenase-1 (HO-1), conferring protection against ROS. Danshensu induced the phosphorylation of Akt, and its cytoprotective effect was abolished by PI3K, Akt and HO-1 inhibitors. These results confirmed the crucial role of PI3K/Akt and HO-1 signaling pathways as the underlying mechanistic action of danshensu. Taken together, the results suggest that danshensu enhances HO-1 expression to suppress 6-OHDA-induced oxidative damage via PI3K/Akt/Nrf2 signaling pathways. Moreover, 6-OHDA-induced dopaminergic neuronal loss in zebrafish could be reduced by danshensu, further supporting the neuroprotective potential of danshensu.


Asunto(s)
Lactatos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxidopamina , Enfermedad de Parkinson/patología , Animales , Elementos de Respuesta Antioxidante , Muerte Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Medicamentos Herbarios Chinos/farmacología , Hemo-Oxigenasa 1/metabolismo , Lactatos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA